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ABSTRACT

Advances in ultrasound technology have fueled the emergence of
Point-Of-Care Ultrasound (PoCU) imaging, including improved
ease-of-use, superior image quality, and lower cost ultrasound.
One of the approaches that can make the adoption of PoCU
universal is to make the data acquisition module as simple as a
“stethoscope” while further processing and image construction
can be done using cloud-based processors. Toward this goal,
we use Structurally Random Matrices (SRM) for compressive
sensing of ultrasound data, Fourier sparsifying matrix for recov-
ery in 1D, and frequency domain approach for 2D ultrasound
image reconstruction. This approach is demonstrated through
wire phantom and in vivo carotid arteries data from ultrasound
system using 25%, 12.5%, and 6.25% of the full data rate and
ultrasound images of similar perceived quality quantified by
Structural Similarity Index Metric (SSIM).

Index Terms— Compressive Sensing, Structurally Random
Matrices, Beamforming, and Ultrasound Imaging.

1. INTRODUCTION

With a portable ultrasound device, trained clinicians can identify
more than forty medical conditions with a high degree of accu-
racy in two minuets [1]. They can detect collapsed longs, gall-
stones, blood clots, heart problems and blockages in the stomach,
intestines, and kidneys. Using a portable high resolution ultra-
sound system, medics and firefighters can make critical patient
care decisions in the “golden hour”- the important 60-minutes
window after Traumatic Brain Injury when effective medical
treatment is most crucial. Point-Of-Care Ultrasound (PoCU)
Imaging is an emerging technology that provides accessibility to
fast and accurate imaging system when it is needed. The goal in
these systems is to move the hardware and software complexity
from the data acquisition module to cloud-based processing units
where the final image can be displayed on a hand-held device of
a physician, for example.

Compressed sensing (CS) methods give us a fresh look at
data acquisition, in general. The theory says one can design sens-
ing or sampling protocols that captures the useful information
content embedded in a sparse signal and condense it into a small
amount of data [2]. It is a very simple and efficient data acqui-
sition method which acquires data at a rate lower than the data
needed in classical Nyquist sampling framework and uses com-
putational power in the decoder from what it appears to be an in-
complete set of measurements. The key ingredient to this recepie
is sparsity- how much small coefficients can be ignored in a sig-
nal when compressed in a known basis. Sparsity is a fundamen-
tal modeling tool which allows accurate statistical estimation and
classification, efficient data compression, and so on [2, 3]. In the
context of CS, sparsity has significant influence on the data acqui-
sition process; it determines if one can acquire signals nonadap-
tively and efficiently. In recent years, the area of CS has branched
out to a number of new fronts and has worked its way into several
application areas, such as radar, communications, and ultrasound

imaging. Eldar and her colleagues published extensively in ap-
plying CS theory to ultrasound imaging [4–7]. The key idea in
all of these works is that the ultrasound signal can be modeled
as Finite Rate of Innovation (FRI) signals which is a sum of a
weighted and delayed known signal [8]. Filtered through a sam-
pling kernel, the unknown parameters (delays and weights) can
be estimated from the observations at much lower sampling rate
as dictated by the Nyquist-Shannon theorem. Reconstruction of
the original signals from the sub-Nyquist signals are carried out
by using high resolution spectral estimation techniques such as
the annihilating filter [9], matrix-pencil method [10], minimum-
norm method [11], and other variants. Other papers follow gen-
eral CS approach without any model [12, 13]. The wave atom
decomposition [14] is shown to have significantly sparse solu-
tion in ultrasound. Wave atom for ultrasound has been recently
studied in [15] but the method was tested using simulations and
not experimental data. In [16], we used the wave atom basis, a
Bernouli random sensing matrix augmented with Robust Capon
Beamformer to reconstruct ultrasound image of in-vivo cardiac
data. When it comes to practical implementation, random sens-
ing matrices require significant memory buffering for storage of
matrix elements and high computational complexity due to their
unstructured nature [2]. Also, with wave atom basis, there is no
fast and efficient computation method like Fast Fourier Transform
(FFT) to get the multiplication of sensing and sparsifying matri-
ces as needed in recovery. Thus, the computational efficiency of
the system in practice heavily depends on the structure of these
matrices.

In this work, we use Structurally Random Matrices (SRM)
for sensing, the Fourier basis for sparsifying matrix, a regularized-
`1 optimization technique for signal reconstruction in 1D and
a frequency domain beamforming method for 2D image recon-
struction. We use the SRM sensing matrices due to their low
complexity for real time ultrasound imaging, hardware imple-
mentation simplicity, and optimal or near optimal performance
for recovery [17]. The Fourier basis is used for signal recon-
struction using the FFT or other fast form Fourier implementa-
tions (e.g., Sparse Fast Fourier Transform [18]). The optimiza-
tion problem based on regularized-`1-norm is solved using the
YALL1 package [19] from Rice university to reconstruct the
signals in 1D. Finally, the CS-based beamforming is applied in
the frequency domain to get the image of a wire phantom as well
as in vivo carotid arteries image using the Verasonics Vantage
system.

2. SYSTEM MODEL FOR COMPRESSIVE SENSING

We use a small bold letter for a vector, a capital bold letter for
a matrix, a capital bold letter with subindex for a row or column
of a matrix, and a capital letter with two subindices for an entry
of a matrix. It is assumed that the radio frequency (RF) signals
received by the i’th transducer (for 1  i  L) in our setup are
sampled using an (M ⇥N) (with M ⌧ N ) sensing matrix� as
follows:

xi = �yi + vi. (1)
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The signal xi = (Xi1, ..., XiM )

T 2 CM is the noisy observa-
tion vector, yi = (Yi1, ..., YiN )

T 2 CN is the signal to recover,
and vi = (Vi1, ..., ViM )

T 2 CM in (1) represents any noise
including instrumentation errors and errors due to the signal be-
ing only approximately sparse. In CS, the received signals can
be reconstructed from a relatively small number of linear inco-
herent measurements, given the fact that the signals have sparse
representation in a known basis  (i.e., yi =  zi ) which is
incoherent with the measurement matrix �. The transform coef-
ficient vector zi is compressible (or K-sparse) in  domain. It
has been shown that when the sensing matrix is orthonormal, the
minimum number of measurements needed to recover the over-
whelming majority of yi is given by [2]:

M � C.µ2
(�, ).K.log(N), (2)

where C is a constant, K is the number of nonzero components
in zi, and the mutual coherence µ(�, ) is the largest entry in
� : µ(�, ) =

p
N.maxi,j |h�T

i , ji|. As shown in (2), the
number of measurements required for recovery is proportional to
the coherency between the sensing and the sparsifying matrices
[2].

The incoherency between the sensing and sparsifying matri-
ces does not guarantee a good recovery. The other important con-
dition is the stochastic independence of the compressed measure-
ments [20], which in case of sub-Gaussian matrices, rows of the
random matrix are needed to generate this stochastic indepen-
decy. There are various reconstruction techniques based on `0-
and `1-minimization methods. `0-minimization techniques are
NP-hard while `1-based techniques can be solved in polynomial
time using convex optimization methods [21]. For a certain sens-
ing system, the stability of sparse approximation techniques must
be evaluated in the presence of measurement noise and imprecise
sparsity. For this purpose, one of the most accepted conditions
is the Restricted Isometry Property (RIP). RIP suggests that the
K-sparse vectors are not in the null space of the sensing matrix,
hence, the vectors can be reconstructed successfully. A matrix
has the RIP of order k and constant �k 2 (0, 1) if it satisfies the
following condition.

(1� �k) k yi k2k �yi k2 (1 + �k) k yi k2 . (3)

In other words, matrices satisfy the RIP condition can be con-
structed using random distributions such as Gaussian or Bernoulli
as their entries [3]. Then, yi can be recovered from xi with high
probability if the elements of� are independent realizations of a
Gaussian random distribution or are following a Bernoulli distri-
bution of ±1.

3. RANDOM BASED SENSING MATRICES

To date, the proposed random based sensing matrices fall into
three types of scenarios [2, 17, 22].

• Random matrices from a sub-Gaussian distribution: The
sensing matrix � is generated by drawing each element
independently from a sub-Gaussian distribution such as
Gaussian or Bernoulli [22–24]. This family of random
matrices is incoherent with all other recovery dictionar-
ies, therefore, there is no need to have a prior knowledge
about the sparsifying matrix; making this solution univer-
sal. Also, the number of measurements needed to recon-
struct the signal is optimum as

M � C.K.log(N). (4)

However the drawback of using random matrices in prac-
tical applications is that they need large memory buffering
for storage of the matrix elements and have high compu-
tational complexity due to their unstructured nature.

• Random matrices from an orthonormal basis: In this sce-
nario, the measurements are taken from rows of an orthog-
onal matrix. This selection is done uniformly at random
from among all subsets of rows of size M . One example
is Fourier matrix (or partial FFT) as given in [25].

Ft,! = e�j⇡(t�1)(!�1)/N , 1  t,!  N, (5)

Then, the minimum number of samples required for ex-
act reconstruction of signal depends on the coherency be-
tween the sensing and sparsifying matrices as shown in
(2). It has a fast and efficient implementation which re-
duces the complexity both at encoder and decoder, but the
sparsifying basis is limited to the identity matrix.

• Structurally random matrices: The SRM uses an orthogo-
nal matrix whose columns are permuted randomly or the
sign of its entries in each column are reversed simulta-
neously with the same probability [20]. Three steps are
involved in making the SRM matrices: (i) Prerandomiza-
tion, which randomizes the signal either by uniformly per-
muting the locations or flipping its sample sign (matrix
R 2 CN ); (ii) Transformation, which applies an FFT
(matrix F 2 CN ) to the signals from step (i); and (iii)
Subsampling, which randomly picks up M rows out of N
from matrix of step (ii) (matrix D 2 CM ). In summary,
the SRM is defined as a product of these matrices with a
normalization of energy as [17]

� =

r
N

M
DFR, (6)

where R is a uniform permutation matrix which scrambles
the signal’s sample locations globally, F is the FFT matrix
as given in (5), and D is simply a random subset of M
rows of the FR matrix. In this paper, we use the SRM
sensing matrices due to their low complexity for real time
ultrasound imaging, hardware implementation simplicity,
and optimal or near optimal performance for recovery.

4. RECONSTRUCTION TECHNIQUES IN 1D AND 2D

In this section, we introduce our signal recovery method as well
as frequency domain beamforming approach to produce the ul-
trasound image. First, we review the recovery method we used
based on regularized-`1 [26], and then the Delay-and-Sum fre-
quency domain beamforming to reconstruct the image.

4.1. Fourier Domain Signal Reconstruction

To recover the signal at the decoder, a non-linear reconstruction
algorithm such as basis pursuit, orthogonal matching pursuit, it-
erative thresholding with projection onto convex sets and lots of
variants are proposed in the literature [27, 28]. The quality of re-
covery of the RF signals depends mostly on (i) choice of the sens-
ing matrix (ii) choice of the best basis in which the signals have
the most sparse representation, (iii) the incoherency between the
sensing and the basis in which the signals are sparse ; and (iv) the
ratio of the number of compressed measurements acquired to the
number of information bearing (non-zero) components of the sig-
nal in that basis. Recently, Demanent and Ying [14] showed that
wrapped oscillatory patterns like ultrasound waves have sparse
representation in the wave atom basis. In our previous work [16],
we followed [15, 29] and used wave atoms as the sparsifying ba-
sis as shown in the third block of Fig.1 of [16]. The problem with
wave atom transform is that there is no fast and efficient computa-
tion method like the FFT to get the� multiplication as needed
in recovery. Thus, the computational efficiency of the system in
practice heavily depends on the structure of these matrices.
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In this work, we use a Fourier dictionary ( ) in the recov-
ery phase due to two reasons: (i) Existence of fast and efficient
implementation of this dictionary; and (ii) No need to transform
the signals to time domain as long as the beamforming can be
implemented in the frequency domain as well. The issue with us-
ing this sparsifying matrix is the coherency with the sensing ma-
trix we used. But given the random structure of the sensing ma-
trix �, we expect that this will not have a significant effect with
experimentally acquired ultrasound data and the performance in
practical situations. In recovery, instead of using the traditional
`1-norm or basis pursuit, the optimization problem used is based
on regularized-`1 [16, 26] which can be written as

minimize ⌧ k  T
yi k1 +

1

2

k �yi � xi k22 (7)

with ⌧ > 0 being the regularization parameter. The `1-
regularization term in (7) promotes  -domain sparsity in the
solution and the `2-norm term keeps the solution close to the
measurements. The YALL1 package [19] from Rice University
is used to solve the optimization in (7) suitable for ultrasound
signals with high dynamic range. The regularization parameter ⌧
is selected empirically based on a trade off between the quality
of reconstruction and the speed of convergence. We have done
a sensitivity analysis to see the effect of this parameter with all
the other ones defined in the YALL1 package and select the best
values to recover the signals.

4.2. Frequency Domain Beamforming

In the frequency domain, the recordings at transducers are de-
noted by Yi(!q), (1  i  L), for L transducers and Q fre-
quency bins (1  q  Q) which can be presented as [16]

Yi(!q) = Hi(!q)P (ri,!q) +Ni(!q), (8)

where Hi(!q) is the frequency response of transducer i, P (ri,!q)

is the pressure field at the receiver i in response to the transmit-
ting wave, and Ni(!q) is the observation noise. In this model,
the receivers are assumed to be point transducers. In practice,
however, due to the limited size of the transducer, Hi(!q) is also
space dependent. The pressure P (ri,!q) is the multiplication
of frequency domain Green’s function of the medium and the
source field generated from the scatterers at location rs denoted
by F (rs,!q). Defining the frequency dependent near field array
steering vector a(rs,!q) as a collection of Green’s functions of
the medium for the receive array as

a(rs,!q) , [

e�j(!q/c)|rs�r1|

4⇡|rs � r1|
· · · , e

�j(!q/c)|rs�rL|

4⇡|rs � rL|
]

T , (9)

with c being the speed of sound, the (L ⇥ 1) vector of received
signals can be represented as

y(!q) = (h(!q)� a(rs,!q))F (rs,!q) + n(!q), (10)

with y(!q) = [Y1(!q), · · · , YL(!q)]
T . Similarly, the vector

n(!q) is the stack vector of all the L observation noise Ni(!q),
and the notation � is the Hadamard product of the two vectors.
The (L⇥1) vector h(!q) = [↵(r1,!q)H1(!q), · · · ,↵(rL,!q)HL!q)]

T

takes care of both the frequency dependent attenuation factors
↵(ri,!q) of the medium as well as the frequency response of
the transducers. For any observation point x inside the ROI, the
search steering vector is denoted by a(x,!q). Before applying
the beamforming method, we use a wavelet filter to suppress
the noise in the received signals. We use the Matlab wavelet
denoising tool based on non-parametric function estimation to
efficiently filter the signals. To be consistent with the original sig-
nals (without compressive sensing), we use the same tool to filter

SSIM 1/4 1/8 1/16
Wire 0.82 0.74 0.72

Carotid 0.87 0.76 0.70

Table 1. The SSIM indices for wire phantom and carotid im-
ages reconstructed by `1-minimization after applying compres-
sive sensing.

out the noise. With ˜

y(!q) being the filtered vector of y(!q), the
non-coherent DAS beamforming results in the following image
reconstructed from the recorded signals

I(x) = (1/Q)

X

!q

a

H
(x,!q)˜y(!q). (11)

The following section summarizes our experimentation with an
ultrasound imaging device to compare the image reconstructed
from frequency domain compressive sampling and beamforming
with the original data reconstructed by our research based ultra-
sound system.

5. EXPERIMENTATION

This section explains our experimental setup to study the pro-
posed approach with SRM sensing matrix at the encoder, the
Fourier transform as the sparsifying basis, and frequency domain
beamforming as our image reconstruction method. Our database
includes ultrasound data from ultrasound phantoms (wire and
breast phantoms), carotid arteries, bladder, liver, breast, spleen,
kidney, and liver. The ultrasound system used to acquire data is
Verasonics (http://verasonics.com). The Vantage system in our
lab, uses state-of-the-art hardware and software technologies to
provide access to raw ultrasound data from each channel, while
preserving the ability to perform high quality real-time imag-
ing at clinically useful frame rates. The L7-4v, a 128-element
linear array transducer with pitch of 0.298(mm), sensitivity of
-64.5(dB), and center frequency of 5MHz is used to acquire the
data. In this paper, we present two sets of data on our wire
phantom, as well as on in vivo carotid arteries data. These data
are acquired in ideal mode which means that each transducer
sends a pulse sequentially and the received data is acquired by all
the transducers, producing a (128 ⇥ 128 ⇥ number of samples)
data matrix. Fig. 1 (a) shows the original image at full sampling
frequency of 10MHz acquired by the system. The subsequent
figures show our results after using 25%, 12.5%, and 6.25%
of the original number of samples acquired by the system. The
SRM sensing matrices is used based on uniformly permuting the
locations of a Fourier matrix and subsampling to M measure-
ments with ratio M/N given before. The regularized-`1 solver
using the YALL1 package with ⇢ = 0.001, ⌧ = 0.5 ⇤ ⇢ is used
to recover the signals in frequency domain. Before applying
image reconstruction method, we use the Wavelet ToolboxTM of
Mathworks to suppress the noise. For quantitative comparisons,
we use the structural similarity (SSIM) index [30] in the resulted
image to measure similarity between two images [5]. We present
the SSIM for subplots (b-d) in Fig. 1, in table 1. Since a higher
value of SSIM implies a greater level of similarity between the
images, using CS results in some degradation in the quality of the
image reconstruction but with such limited computation in the
encoder, this degradation is acceptable. Finally, the same method
is applied to the carotid arteries data obtained from the ultrasound
imaging device and presented in Fig. 2. Similarly, Fig. 2 (b-d)
show the image reconstructed from the data subsampled again at
M/N = 25%, 12.5%, 6.25% respectively. Visual observations
show that most of tissue boundaries data including the arteries
and walls of the vessels are preserved even after removal of
almost 83% of the data. However, 1/16 sample rate reduction
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Fig. 1. Experimental wire data: (a) Original wire image at full sample rate, (b) image reconstructed with the signals from the SRM
with 0.25% of the samples and recovered using the CS recovery, (c) same as (b) but 12.5% of the samples used in compressive sampling,
and (d) only 6.25% of the samples used in CS. The dimensions are normalized by the wavelength.
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Fig. 2. Experimental carotid artery images: (a) Original Carotid image (b) image reconstructed with the signals from the SRM with
0.25% of the samples and recovered using the CS recovery, (c) same as (b) but 12.5% of the samples used in compressive sampling,
and (d) only 6.25% of the samples used in CS. The dimensions are normalized by the wavelength.

results in degradation of the image as shown in Figs. 1 and 2 (d)
for both wire and carotid data.

6. SUMMARY

In this work, we applied the SRM compressive sensing matri-
ces to experimental ultrasound data from a Verasonics system to
reduce the number of samples acquired in current ultrasound ma-
chines. The Fourier transform was used as the sparsifying ma-
trix followed by the frequency domain beamforming. The results
showed that after intensively reducing the sampling rate by the
SRM matrices and recovering the signals using FFT, we can get
similar image quality as the one reconstructed from the original
samples at full data rate.
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