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ABSTRACT 
In this paper a new method is proposed to classify vascular tissues in the range from normal to different degrees of 
abnormality based on the Photo-Acoustic (PA) signals generated by different categories of vasculatures. The 
classification of the vasculatures is achieved based on the statistical features of the photoacoustic radiofrequency (RF) 
signals such as energy, variance, and entropy in the wavelet domain. A feature vector for each category of vasculature is 
provided and the distance between feature vectors are computed as the measure of similarity between vasculatures. The 
distances are mapped in two-dimensional space depicting the proximities of the different categories of the vasculatures. 
The method proposed in this paper can help both detecting abnormal tissues and monitoring the treatment progress by 
measuring the similarity between vascular tissues in different stages of treatment. The method is applied to simulated 
data as well as in vivo data from tumor bearing mice to detect cancer treatment effects.  
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1. INTRODUCTION 
Earlier detection of cancer and more effective treatment monitoring methods each offer the opportunity to reduce 
treatment costs, save lives and improve patient outcomes. Therefore, it is important to develop noninvasive and 
quantitative tools for tumor diagnosis and treatment monitoring [1]. Biomedical Photo-Acoustic (PA) imaging has 
developed extensively over the last decade and has many attractive characteristics such as the use of non-ionizing 
electromagnetic waves, and good resolution and contrast. PA imaging is based on the detection of acoustic waves 
generated by the absorption of light. When imaging in-vivo, blood has up to six orders of magnitude larger light 
absorption than the surrounding tissues [2] and therefore the PA pressure waves from the blood tissue dominates the PA 
signal. Due to this property, PA systems can produce high-contrast images of vascular structures.  
 
Blood vessels are formed in tumors (abnormal tissues) through a process known as angiogenesis. Tumor cells are 
typically more metabolically active than normal tissues, and therefore require oxygen, nutrients, and must remove their 
waste. As tumors are structurally abnormal at the cellular, tissue, and vascular levels [3], they contain abnormal, dis-
functional, and leaky blood vessels that differentiate them from normal vessels [4]. The vasculature of normal and 
abnormal tissues can be distinguished by their morphological structures: normal vasculature typically has a highly 
organized structure. This vascular structure has been modeled to have a narrow range of branching angles at blood vessel 
bifurcations, while abnormal vasculature has an erratic structure with a wide distribution of branching angles.  
 
It has been theorized [5] [6], and in this work it is assumed that due to dissimilar structures of normal and abnormal 
tissues, PA signals generated by the two types of tissues have distinguishable features. In [5] [6], the wavelet features of 
RF-signals from PA signals were classified using a SVM (Support Vector Machine) classifier. In the mentioned work, 
the classification algorithm only determines whether a vasculature is normal or not. In this paper, we propose a method 
for monitoring and classification of different categories of normal and abnormal vasculatures/tissues. The method is 
based on the features extracted from PA signals in the wavelet domain. The distance between features in the two-
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dimensional space monitors the proximities of the vasculature and represents how they are classified. The performance 
of the method is investigated on data provided by simulation as well as on in-vivo data. 
 

2. MATERIALS AND METHODS 
The PA data used in this paper are generated by simulation as well as acquired during in-vivo experiments. A simulation 
platform has been developed to generate PA data from normal and abnormal tissues [5]. In this platform, the PA signals 
are generated by a mathematical model for pressure waves from fractal trees that simulate vascular tissues, and are 
detected by a 128 element transducer array. Details of the simulator can be found in section 2.1 and in [5].  
 
For in vivo experiments, tumor bearing mice are used and RF signals are acquired by scanning the tumor pre and post 
treatment at given time intervals.  
 
2.1. Simulation of vascular tissues and photoacoustic signals  

2.2.1. Fractal tree model 

In the literature, many methods are proposed for generating and representing models of vascular structures in tissue [6] 
[7] [8] [9] [10]. Fractal trees are a way of modeling vascular morphology in tissue based on simple repetitive 
mathematical rules. Several investigators have used fractal trees to model vascular tissues [9] [10].  A fractal tree is a 
mathematical structure that is formed by iteratively applying a statistical branching pattern to generate the large scale 
object. For each iteration, the pattern is specified as a relationship between the parent segment, the left child segment and 
the right child segment. In this work, we used fractal trees to model normal and abnormal vascular tissues. Each tree is 
defined by different structural properties such as branching angle distribution, the average vessel length, and the average 
vessel radius. Branching angle distribution is used as the most significant structural property to distinguish between 
normal and abnormal vasculature. For instance, a normal tissue is modeled with uniformly distributed branching angles 
ranging from 25-27°and an abnormal tissue is modeled with branching angles ranging from 25-140° as shown in Figure 
1. For a detail description on generating vascular tissues using fractal trees refer to [5].  
 
2.2.2. Photoacoustic signals simulation 

When a brief laser pulse illuminates a medium, an initial excess pressure will be created in the medium according to: 

(ݔ)଴݌	                                                          = Γ(ݔ)ߤ௔(ݔ)Φ(ݔ)																									(1)                                                         
where  ߤ௔(ݔ) is the optical absorption of the medium and Φ(ݔ) is the energy fluence from the laser. The parameter  Γ(x) = ஒ(୶)ୡమ(୶)େ౦(୶)   is known as the Gruneisen parameter, where β(x) is the thermal expansion coefficient, c is the speed of 

sound and C୮(x) is the specific heat capacity. If the laser is fired at t଴ = 0 , the PA propagation wave  at any time and 
position is determined by: 
,ݔ)݌		                                                         (ݐ = డడ௧ ൫݃(ݔ, (ݐ ∗                                                    (2)															൯(ݔ)଴݌
where  g(x, t) = ଵୡమ ஔ(‖୶‖ିୡ୲)ସ஠‖୶‖    and δ(t) is the Dirac impulse function. 

To generate a photoacoustic signal for a particular transducer, the PA simulator operates on a fractal tree using 
cylindrical-segment geometry and simulates PA response from each tree. Each cylindrical vessel segment has a defined 
start position, end position and vessel diameter to completely specify the fractal tree geometry. To form the PA signal, 
each cylinder is broken down into many individual PA point sources. The distance of each point source to the transducer 
is then calculated. Using Eq. (2) the contribution from each PA point source is added to the PA signal. In the simulator, 
the transducer is configured as a linear array consisting of 128 elements with 0.3mm distance between them. Data is 
captured from the simulator with a sampling rate of 67MHz.  
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• Energy Distribution: The average energy of a signal with the size of N is defined as: 

                                                          energy = ෌ ଶே௡ୀଵ(݊)ݓ 																																						(3)          
                                                  

• Variance: The variance is a measure of how far the signal values are spread out from each other. 

                                                          variance = ଵே෍ (݊)ݓ) − ଵே∑ ே௜ୀଵ(݅)ݓ )ଶ	ே௡ୀଵ 									(4)                                             
 

• Entropy: Entropy is a statistical measure of randomness that characterizes the smoothness of the signal. 
  																																															݁ntropy = ෌ ଶே௡ୀଵ(݊)ݓ ln(ݓ(݊)ଶ)																	(5)                                       

 
The three statistical features are computed for both the low-pass and high-pass sub-band signals at each wavelet scale. 
Therefore,  3 × 2 features are obtained at each level (3 features are computed for each of approximation coefficients and 
detail vectors).  Thus, the wavelet decomposition at scale l provides  6 × ݈  features. For instance, in the case of Wavelet 
decomposition at scale  ݈ = 5, a feature vector with 30 elements is obtained.  

 
2.3.4. Measuring Feature Distances 

For the in-vivo data, it is assumed that for different conditions (e.g. pre-treatment and post-treatment) the tumor 
properties change due to change in vascular structure that are caused by the treatment, or due to the changes in 
vascular structure related to tumor growth. Therefore, we expect the PA signals obtained to differ for the different 
conditions. This should be reflected also in the features that are derived from the PA signals.  Based on this 
assumption, the proximity between feature vectors in different conditions signifies the changes in tissue due to the 
treatment.  Feature vectors further apart would be indicative of greater change in the tumor tissue vasculature. The 
distance between feature vectors is considered as a measure of the similarity between them. The Euclidean distance is 
used to compute the distance between each pair of the vectors. A matrix of distances is provided in this step. Having  ݌ × ݌)  feature vectors, a matrix of distances with size of ݍ ×  .ଶ is obtained(ݍ

  
 
2.3.5. Monitoring and classifying the samples 

In order to visualize the distances between feature vectors, a Multi-Dimensional Scaling (MDS) analysis [12] is used to 
map the distance matrix to a two or three-dimensional space. The MDS provides a visual representation of the pattern of 
similarities or dissimilarities among the samples. Each sample is represented by a point in a multidimensional space. The 
points are located in this space so that the distances between them are strongly related to the similarity of the samples. 
Two similar samples are represented by two points that are close together, and two dissimilar samples are represented by 
two points that are far apart. By applying MDS to the matrix of distances,  ݌ ×  points in 2-dimensional space, each   ݍ
corresponding to one sample, are obtained. We call these points as the ‘feature points’. By mapping feature points in 
two-dimensional space, we monitor the samples and their similarities. Samples belonged to the same condition are 
classified in one group. 
  

3. RESULTS 
The proposed method was applied to two sets of data. One simulated and another obtained from in-vivo experiment on 
tumor bearing mice.  
 
3.1. Simulated data 

For the first set of data, four groups of vasculatures were generated ranging from normal to abnormal. The level of 
normality (or abnormality) is defined by the branching angles in the simulated fractal tree vasculature. A normal 
vasculature is considered to have branching angles between the range of 25-27° and a vasculature with branching angles 
in the range 25-140° is considered to be abnormal. Two other groups with branching angles of 25-40° and 25-80° were 
considered in the range between normal and abnormal. Five samples from each group were taken. PA signals from each 
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sample were simulated and then a feature vector in wavelet domain was extracted for each sample. The distance between 
feature vectors were computed and mapped to a two-dimensional space using MDS.  
Figure 4 plots the samples of four groups of vasculatures in the two-dimensional space. Each symbol in the figure 
represents one group of vasculatures and similar symbols with the same color show samples that are known to be in the 
same group. The distance between sample points shows their similarity. As seen from the figure, the samples of the same 
group are located closer to each other and the groups with more similar structures (more similar branching angles) are 
next to each other. The four groups of vasculatures are arranged in the order of their similarity. As MDS is a method for 
visualizing proximities between samples, the axis show relative distance between feature points in two-dimensional 
space and the numbers are dimensionless quantities. 
 

 
Figure 4: Monitoring 4 groups of vasculatures in two-dimensional space 

 
3.2. In-vivo experiments 
The algorithm was then applied to in-vivo data from tumor bearing mice, as described in section 2.2. Two cases were 
considered: control and treated. PA signals were acquired before and after 24 hours for both control (untreated) and 
treated mice. The frames obtained through scanning the tumor were considered as the samples of the particular 
condition. For each mouse, we selected the frames, which contain tumor planes with the largest tumor physical 
dimensions (typically in the middle of the tumor). The algorithm was applied on the beamformed RF data of each frame 
within a region of interest that enclosed only tumor tissue. The aim was to monitor and classify the tumor frames pre and 
post treatment, for both the control mouse (no ultrasound or radiation treatment but with the mouse exposed to the same 
set-up conditions) and the treated mouse (active ultrasound and radiation treatment).   
 
Figures 5(a) and 5(b) show the results of applying the algorithm on the two mice. Mouse1 was the control and Mouse2 
was the treated mouse. For each mouse in each condition of pre and post treatment, 15 frames (samples) were analyzed. 
We expect to see greater similarity between the frames of pre-treatment and post treatment for the control mouse. For the 
treated mouse, we expect to observe greater dissimilarity between pre and post-treatment frames (provided the treatment 
was effective). As the results show, the pre and post-treatment frames of control mouse are similar and cannot be 
distinguished. In the treated mouse, we observe pre-treatment and post-treatment frames can be classified into two 
groups. For instance, a clustering algorithm (such as Fuzzy c-Means [13]) can be applied on sample points in Figure 5(b) 
and divide the samples into two groups of pre and post treatment. This clustering cannot distinguish between the samples 
in Figure 5(a). In this paper, we do not discuss such clustering algorithms. 
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Figure 5: Monitoring pre-treatment and post-treatment frames in two mice: (a) control, and (b) treated. 
 
 

4. CONCLUSIONS 
In summary, a novel method is proposed to monitor treatment effects by classifying normal and abnormal vasculature 
and visualizing a cancerous tumour pre and post treatment through the analysis of photoacoustic signals. The aim is to 
classify different levels of vascular abnormality in the treated tumor.  

 
The method was applied on two sets of data: one from simulations and another from in-vivo experiment. 
Photoacoustic signals were obtained by a mathematical model (the simulation) or by scanning a tumor pre and post 
treatment (the in-vivo experiment). For each set of photoacoustic data, a set of discriminative features were computed 
as a feature vector. The distances between feature vectors in different conditions were measured to detect the 
proximities in the vasculature/tissue samples. To visualize the proximities, the distances were mapped in a two-
dimensional space.  In the final map, each point represents a sample of vasculature or tumor frame in a particular 
condition. The distance between points shows how similar the samples are. Smaller distances represent more 
similarity and larger distances represent more dissimilarity. Using this method, the treatment effect can be studied by 
monitoring the tumor tissue samples before and after treatment and investigating the samples proximities. 
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