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Abstract—Photoacoustic or PA waves, generated from blood cells, create
distinct spectral features in the Fourier domain, for example, maxima and
minima. In this way, high-frequency PA signals can be used to identify
and distinguish blood cells. However, due to finite bandwidth of physical
systems, many interesting Fourier features are invisible within the observed
bandwidth. To overcome this challenge, we reformulate the PA imaging
problem as a time-of-flight super-resolution problem. Based on the PA
wave equations, we show that the problem reduces to estimation of sparse
cellular features from a set of finite trigonometric moments. For this
purpose, we develop a super-resolution algorithm which achieves near exact
performance (in context of maximum likelihood estimation) when working
with experimental data. Hence, our work alleviates an important bottleneck
in PA imaging linked with classification of cellular features.

I. INTRODUCTION

Mathematical imaging in life sciences is the key to understanding
biological features ranging from molecular to anatomical scales. While
ultrasound imaging, MRI and computed tomography are well estab-
lished imaging methods at the anatomical level, a number of challenges
still remain at the microscopic level. Some attributes include penetration
depth, spatial-temporal resolution as well as imaging contrast.

To this end, photoacoustic or PA imaging proves to be advantageous
in many ways [1]. As the name suggests, the PA effect is the conversion
or transformation of electromagnetic energy into acoustic energy—a
phenomenon that was first observed by Alexander Graham Bell in 1880
[2]. Qualitatively speaking, the interaction of an optical excitation pulse
with a material results in a rise in temperature. Although infinitesimal
(~ milli kelvin [3]), the rise in temperature is enough to catalyze ther-
moelastic expansion resulting in stress waves that manifest as acoustic
energy. Due to the fact that PA imaging utilizes a combination of light
and sound in the process of imaging, disadvantages in one regime (for
example, sound) can be compensated by the other. A concrete example
is that of biological tissues. Tissues are known to scatter light but this is
orders of magnitude lesser in the case of sound. Therefore, PA imaging
offers greater penetration depth [1].

Due to the numerous advantages centric to the PA imaging tech-
nology [3], [4], within the the last decade, there has been a surge of
research interest in this area. This includes development of efficient
instrumentation as well as mathematical algorithms for solving inverse
problems. For a detailed overview of the topic, we refer to [5].

As pointed out in [6], the shape of the PA wave encodes important
information linked with physical parameters such as dimensions, sound
speed and density. By capitalizing on this aspect of PA imaging, recently,
Strohm and Kolios [7] developed a label-free technique for classification
of cell types: red blood cells (RBC), white blood cells (WBC) and
circulating melanoma cells (CMC). This one of a kind imaging modality
was the first demonstration of a setup capable of (a) identification
of cells, as well as (b) estimation of the cell size. Thus leading to
a classification algorithm that can distinguish cancer cells from their
healthy counterparts, besides understanding cell morphology [8].
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Fig. 1. Photoacoustic measurements of single RBC. The cross-section of the
biconcave RBC is shown in blue ink. The arrow shows the direction of wave/pulse
propagation. (a) Horizontal configuration with minimal spread in time-domain.
(b) Vertical configuration with a larger spread in time-domain. The red bars mark
the approximate time-spread of the pulses. Also see Fig. 4.

The approach discussed in [7] is based on the spectral periodicity of the
measured data. By computing the power spectrum of the measurements,
the authors argue that cell parameters are related to spectral features such
as the inter-spacing between two consecutive minima. This heuristic
approach works whenever the spectral features are distinctly visible.
However, this may not always hold.

Let us begin with a discussion on the mathematical intuition behind
the visibility of spectral features. Consider the case of RBCs which
have a biconcave shape. This is shown in Fig. I (also check Fig. 4 for
clarity) where we overlay the biconcave cross-section in blue ink and the
approximate time spread (similar to full width at half maximum) in red
ink. When a pulse or a wave propagates in the horizontal configuration
(cf. Fig. 4, 0 = 0), it is reflected by the cell walls. The resulting PA pulse
echo measurement has minimal spread in time-domain as the pulse
propagates through the center of the RBC—the point of minimum
thickness!. On the other hand, in the vertical configuration, the PA
pulse echo measurement has a larger spread in time-domain as the pulse
propagates through the diameter? of the cell.

As an example, assume that two dominant reflections of equal
intensity occur in any possible configuration. Much in the same way
as time-of-flight or ToF imaging [9], we may model the reflectors or
sources as,

h(t)=6(t—9) +5(t— %)

where di, k = 1,2 are the relative locations of the reflectors from the
sensor, v is the propagation speed and § denotes the Dirac distribution.

'This corresponds to a physical distance of 0.8-1.0 pm.
2This corresponds to a physical distance of 6.2-8.2 pum.
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Fig. 2. Power spectrum of low-pass measurements: B, (w) = 8, (w)b(w)
where b (w) is the frequency response of the low-pass measurement device. With
Ag < Ay, no spectral minima occur in the bandwidth w € [—Qp, Qm].

Let A = |d2 — d1| be the separation between the cell walls and h (w) =

J h(t) e ?"dt denote the Fourier transform of h. Then, the power

spectrum of h denoted by Sp is S (w) £ \ﬁ (w) |* = 4cos” (£2).
Since most physical devices have a finite bandwidth, observations are

written as By, (w) = S (w) b (w) with b(w) = 0,]w| > Q. As
the inter-spacing A between the cell walls decreases, it is very likely
that none of the spectral minima are visible within the bandwidth.
This is shown in Fig. 2 where Ay < A; and b (w) is chosen to be a
Gaussian window. This approach is similar to cepstral analysis used in
acoustic microscopy (cf. pg. 157, [10]). Clinical and pre-clinical systems
typically have a bandwidth Q,, < 60 MHz and lack the sensitivity to
detect signals from single cells. UHF transducers used for single cell
imaging have 200-500 MHz bandwidth [7], [11]. However, observing
all cellular features ranging 5-30 pm requires bandwidths in the GHz
range [11]. Our simple mathematical reasoning justifies the bottleneck

quoted in [7] (cf. pg. 744):

It was not possible to calculate the RBC size, as the spectral fitting method
is highly sensitive to the orientation of the RBC relative to the transducer,

and the orientation could not be determined in these measurements.

Can we do better than this? Overcoming this computational drawback
has important consequences in (a) cell counting and classification [7]
specially in the context of circulating tumor cells and cancer related
diagnosis, and (b) understanding cell morphology [8]. The main goal
of this paper is to formalize the inverse problem of accurate estimation
of cell parameters from the PA measurements which allows us to recover
cell parameters (not limited to RBCs) from PA measurements. Starting
with the wave equations of PA imaging, we reformulate the inverse
problem as a time-of-flight or ToF estimation problem [9], [12] whereby
estimating cell parameters amounts to temporal super-resolution given
a finite set of trigonometric moments.
A. Organization of this paper

In Section II, we develop the PA wave equation solution for cellular
ToF imaging problem. We discuss the solution to the inverse problem of
ToF estimation in Section III. In Section IV, we validate our approach

with PA measurements based on RBCs and CMCs. Finally we conclude
in Section V.

II. ProsLEM SETUP: PHOTOACOUSTIC TOF IMAGING
A. ToF Imaging Pipeline
The main components of any ToF imaging [9] modality are the
probing function, p (t), the scene response function (SRF), A (t,7)
and the instrument response function (IRF), ¢ (7,t).
Said simply, the probing function “probes” the scene. This may be
a pulse or a continuous wave function, such as a sinusoid [13]. The

interaction between the probing function and the SRF results in the
reflected signal (equivalent to PA wave generated signal in PA imaging),

r(t) :/p(T)h(t,T) dr.

For example, in ranging or time-delay estimation problems, h (¢,7) =
o0 (t — 7 — to) where ' is the intensity of an object at a distance do
which results in delay to = 2do/v. In this case, r (£) = Top (t — to).
Alternatively, the SRF may arise from a Green’s function linked with a
physical system, for example, fluorescence lifetime [12].

The reflected signal 7 (¢) then interacts with the sensor equipped

(1

with some instrument response function (IRF) and the measurements
are recorded in the form,

m(t):/r(T)go(t,T)dT

IRF

@

where ¢ may be the point spread function of a lens (spatial context)
or the temporal response of a transducer, for example, the ultrasound
detector in the case of PA imaging. Typically, m is sampled my =
m (kTs) ,k € Z where Ty > 0 is the sampling rate. Furthermore,
whenever h and ¢ are shift-invariant, that is, h (¢,7) = h (t — 7), the
measurements simplify to a convolution/filtering equation,

m(t) = (prxhxp)(t). 3)

Next, we will discuss the probing function, the SRF and the IRF that
stem from the PA imaging problem.

B. From PA Wave Equations to Time-of-Flight

We use capitalized symbols P, T, H to denote the spatio-temporal
functions with arguments 7 = (z,%,z) ' (spatial co-ordinates) and ¢
(time), that is, P (7, t), and so on. The PA effect is explained by coupled
differential equations based on temperature T and pressure P [14],

2 (T — k1P) = k2 VT + k3H
O,P = ka8f T
where
— V2 (-) is the Laplace operator, [0, = V2 —1 728} is the d’Alembert
operator and v is the speed of sound in given medium.
— {Hm}izl are some physical constants (for details, we refer to [5]).
— H (7, 1) is the heat or thermal energy attributed to the electromag-
netc or EM radiation of the optical excitation pulse.
— P (7,t) is the resultant acoustic pressure wave.
In practice, it is justifiable that the thermal conductivity is zero and the

P-T coupled differential equations reduce to (cf. pg. 4 in [5]),
1
OP = <v2 — ﬁaf) P = —rkdH. (4)
In the case of one-dimensional propagation, 7= (0, 0, z) ", the above
admits a simple solution based on the integral equation, P (z,t) =
£ [H (r,t — ) dr. Consider an instantaneous source H (z,t) =
0 (t) 6 (z) and a reflective surface at z = zp > 0. In that case [15],
P(z,t)=6(t—2)+6(t—
—_——

v

z—T

)

z+3zo ) ,

(a)

where (a) arises from the direct excitation of energy which is delayed by
the travel time of sound and (b) is the travel time between the source
and the reflective surface (cf. Fig. 3(a)). Furthermore, if we consider
H (z,t) = p(t) 6 () where p is temporal probing function, we obtain
a convolution between P (z,t) and p, ignoring a constant dilation o v.
This is consistent with the experiments in layered media (cf. Fig. 4, [16])

(b)
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Fig. 3. Photoacoustic waves in layered media. All figures should be understood in sense of negative time. (a) Geometrical setup with K reflecting boundaries
or layers. The first reflective surface marked in blue is virtual. Optical excitation causes thermo elastic expansion resulting in sound waves and ¢ = z/v is the
instant at which sound waves travel to the source. There on, sound waves are reflected from each layer at t = z; /v. (b) Corresponding scene respond function.
Here, each reflecting boundary results in a round trip travel time of t;, = 2z /v. (c) We plot the propagating wave, P (2,t) in the case of optical excitation
H (z,t) = 6 (z — z1) p (¢), where the probing function p (¢) is chosen to be a Gabor pulse. (d) Time-domain waves reflected towards the source at z = 0.

as well as the convolution equations in acoustic microscopy (cf. pg. 152,
[10]). In general, for the case of K reflecting boundaries at z = 2}, with
reflection coefficient &, we have,

h(t,7)=P(z,t—71)= Z::Ol el (t — 7 — Z22) - (6)

which also serves as our SRF for the PA imaging context. In Fig. 3(b) we
plot the SRF corresponding to the general case of K reflective surfaces.
With K = 2 and optical excitation of the form,

H(zt) =0(z—20)p(t)

we plot the pressure wave P (z,t) in Fig. 3(c) and the corresponding
time-domain waveform at z = 0 in Fig. 3(d).

Typically, the incoming pressure wave is sensed through an ultrasound
transducer with some IRE . Furthermore, by ignoring the constant
offset of z7 /v due to virtual source (or the delayed sound wave), we
model the measurements as,

m(t) = (pxP (0,64 2) x0) () =3 " (pxep) (t—25).
@)

C. Tomographic Measurements for Geometric Estimation

Blood cells have distinct geometrical features based on their shape,
size and morphology. Here, we will focus on the RBCs. As shown in
Fig. 4, tomographic measurements of the RBCs leads to a functional
relationship between ToF and the orientation of the RBC. In Fig. 4,
measurements at § = 0 are associated with the smallest possible
ToE. This corresponds to the horizontal configuration in Fig. I where
the experimentally obtained time-domain measurements are relatively
concentrated when compared to the vertical configuration, § = 7 /2.
We may therefore write,

(7>
Yy W e (1-47),

Ideally, for the case of cell imaging, K = 2. Since RBC:s are bi-concave,

Zk,0
) £270 @)

= |t§9) — téo)\ is a proxy of its relative orientation with respect to
the source. On the other hand WBCs are spherical and Ay = |t§9) —
t89)| o 2p where p is the radius. As a result, {6, Ap} may be used to
characterize the geometry of cells (in our case) and a layered enclosure,
in general. In practice, one acquires measurements of the form,

0=m/2 4
P 0=m/2 =z >t
0=0 0 —Ag— >t
Cross-section =0 T t

—Ag—

Tomographic Measurement Corresponding Time-of-Flight

Fig. 4. Tomography of RBCs. At each 6, reflections from the cell walls (layered
media) result in a distinct time-of-flight, Ay = |21 — 20|. Note that Ay encodes
the geometric properties of the enclosure which may be RBC, WBC or CMC.

mo, (nTs),n=0,...,N =1, {0, =220}" ©)

and the inverse problem is to recover {7,20), t;ce)}f:gl from which Ay
may be estimated. In this work, we will restrict ourselves to K = 2.

III. InveErsSeE PROBLEM: ESTIMATING TIME-OF-FLIGHT
In order to recover unknowns {'y,(gg),tg)}kK;Ol from (9), we will
begin with writing p * ¢ = ¢ in (8). Furthermore, we will approximate
¢ with trigonometric moments [9], [17], [18], um (wot) & eI™mwot]

D)~ (1) = Z‘MKM bmUm (wot),

where by,’s are Fourier series coefficients and wo = 27 /NTs, assuming
that To = NT is large enough that all the K reflections are observed.
This is typically the case in almost all pulse-echo ToF systems [9], [12].
Here, woM =~ ., and M is a function of the transducer bandwidth.

(10)

By substituting the approximation of ¢ in (8), we obtain,
K—1

0 0
mo (t) = Z\m\gz\/f bm Zk:o 'y](c )um(wot — thé )),

and since Uy, is separable, wm (f + g) = um (f) um (g), we have,

me (t) = Z|m\<M bmhgg)um (wot)
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Algorithm 1: Photoacoustic Time-of-Flight Estimation

Data: Measurements mg (n7Ts) in (9) with N > 2M + 1 with M > 2.
Result: Cell Parameters: {7(9) (9) tw) t(g)} and Ay = \t(g) t(9)|
1) Estimate h® = U+D+mg (12) where * is the matrix psuedo inverse.
2) Given h(®), estimate {)\0, )\1} using (13).
3) With {Xo, A1} known, solve for Q (z) = 0 — {Jio, fi1 } and hence, the
time-of-flight Z( ) = — 2y /wo.

e

4) The estimates {'yo } are obtained using least-squares solution,

~ 2
arg min wge)c/)(nT — ?ge))’

|m (nT) = " 3T — ) —
o0 A1)

where,

70 _

m m:*M,...,M

Zk . ’Y(e) * (w t<9)) (11)

are the Founer series coeflicients of the sparse SRF denoted by
ho (t) = Sor” o 7(9)5( t,(f)). The above, (11), is the standard form
of equation that shows up in context of spike deconvolution [17],
time-delay estimation [19] and sampling theory [20]. Given sampled
measurements in (9), we stack them in vector—matrix form,

mg = UD,h® (12)

where,

e mp € RY is a vector of measured data (cf. Fig. I).

o U e CN¥CM+1) ¢ 2 DFT matrix with elements [e”’“"O"TS]
D, € C(M+1x2M+1)
bmm = a(mw)-

e h® € C?M+1 i5 4 vector whose elements are the Fourier transform

of the SRF (cf. (11)).
Since (12) is a linear system of equations, we can estimate h® directly

provided that {b.,}m are known. With h® known, we will use
trigonometric interpolation [17], [20], [21] to estimate the unknowns

n,m’
is a diagonal matrix with diagonal elements

{7(9),7(9) t(e) t(e)} While trigonometric interpolation works for
finite K, for the specific case hand, K = 2, we outline a closed form
solutlon (assummg noiseless setting). For this purpose, let us define,
= po + pi, resulting in,

ﬁge) — ,Y(@) (6)

w2 i (wot( )) and hence, we have, h{}
7O _ @, ©

0 Y +m Mo + 1 M1
(0 0 6 >0 0 0 :
hé) ()’u _|_,Y()M2 hé) ()3+’Y()3

Let @ () = (x — po) (z — p1) = 2% + A1 + Ao be some quadratic

polynomial. Tt follows that, @ (11x) = 0 = uz + A1 pur, + Ao, k = 0, 1.

Based on this, we can write,

W Q (o) + 1 Q (1) = 0

Q =Q &
(Mo):O (11) { 2 100 (110) + 12 11O (1) = 0

which is equivalent to solving the linear system of equations,

B0 7O 1T 7
h(é) ng [ oY } = h(e) :
Hence, at a fixed 0 and noiseless conditions, four values of ngz) suffice
to compute the four unknowns. This is accomplished by implementing

the algorithm outlined in Algorithm 1. Next, we experimentally validate
our approach and discuss practical aspects of our implementation.

(13)

IV. Puoroacoustic ToF IMAGING: EXPERIMENTAL VERIFICATION

Our proposed approach is validated via experiments using PA imaging
setup and the data is acquired using the procedure described in [7].

Horizontal Angled Vertical

Ao

st ==

Fig. 5. Optical images of RBCs at various orientations ranging from horizontal to
vertical. Optical images are used to register with corresponding PA measurements.

A. ToF Estimation of RBCs

In the first case, we consider RBCs at four different orientations. For
this purpose, PA measurements myg are acquired using the experiments
in [7]. Conceptually, this is similar to tomography as shown in Fig. 5.
As the RBC rotates from horizontal to vertical state, one should expect
the ToF to increase (cf. Fig. 4). As highlighted in the literature [7],
previously, this was not possible. Here we model ¢ as a Gabor pulse.
While this choice is heuristic, in our experience, and as will be shown
shortly, this achieves near exact performance (in context of the maxi-
mum likelihood estimation or the MLE). As an approximation to the
transducer response, the bandpass pulse is chosen such that its maximum
response is between 200 to 500 MHz [8], [11]. With ¢ in place, we
use a finite Fourier series approximation which specifies {bm} in (10)
and hence Dy [9], [12] with M = 18 and fo = wo/27m = 25.80
MHz. To deal with model mismatch and noise in experimental data,
we replace steps 1) and 2) in Algorithm 1 with Cadzow’s method [22].

In Fig. 6(a), we plot {my, (nTs)}An (cf. (9)) with Ts = 0.125 ns,
N =311 and 6 = 0 to 7/2 (approximately) in 108 steps, which we
call, time-resolved pixel. For each of the four orientations, the PA signal
or the time-resolved pixel is plotted in Flg 6 (a1) to (aq). The estimated
locations of layers or cell walls, that is {'y( ) t(g)} k=o0,1 are also marked.
Since this is the case of K = 2, it is possible to compare our results with
exhaustive search or MLE. Hence we also compute the MLE estimates,
{’y,(f), t,(f)}k:g,l. We use peak signal-to-noise ratio or PSNR denoted
by 7 as our performance metric. The results are summarized as follows:

01 01 01 01 units
TIMLE 3297 31.05 35.88 35.89 dB
TIPSR 3297 31.05 34.61 35.88 db
Size/ToF  5.780 5.300 3.820 1.960 pum

where 7psr is the PSNR due to PA-ToF super-resolution and nuLe is
due to the MLE and we use v = 1570 m/s. Since we rely on optical
microscopy (cf. Fig. 5) for estimating orientation angle 6, the registration
between 6 and mg (t) is challenging. However, near exact performance
in context of MLE suggests that the PA-ToF can recover a proxy of
the orientation which can be used to discern features. To exemplify this
point, we move to the next case.

B. ToF Estimation of Melanoma Cells
In Fig. 6(b), we plot PA measurements for CMCs. With K = 4,

we super-resolve measurements and plot {’y,(ce)7 t]ig)}k:mz,». The recon-
struction accuracy is npsg = 33.07 db. We note that |'7(()9)| and |’y§9)|
correspond to the dominant reflections. Based on this, we compute the
ToF which is A = 10.75 ns. The corresponding cell size is Av = 16.87
pm. This is consistent with the results in [11]. Clearly, the estimated

cell size is the distinct feature which distinguishes CMCs from RBCs.
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Fig. 6. (a) Photoacoustic measurements {mg, (n7s)} ¢ With Ts = 0.125 ns, N = 311 and 0, ranging from vertical to horizontal orientation in 108 steps.

(a1) to (ag) We plot PA measurements for four orientations. In the inset, we plot the optical image of the single cell RBC together with an approximate orientation

angle. The measured data in blue ink (

). Super—resolved SRF specified by {|'y,(C0) [, t](:)) }r=0,1 in (6) and (8) is marked in red ink (—se). Based on the estimates

{W,(f) |,f§€9)} k=0,1, the reconstructed data mg (8) is plotted in red ink (- - -). Reconstruction quality metric, the PSNR and the ToF are also annotated in the
inset. Finally, we show the result of maximum likelihood estimation (exhaustive search) with blue spikes (—-»). (b) PA measurements of melanoma cells (CTC).

We show the data in gray ink (—-). Super-resolved SRE {|’y,<co> [, tgf)}kzo’;g is

V. CONCLUSION

Starting with a forward model for the photoacoustic phenomenon,
we compare the measurements of blood cells to a sum of overlapping
echoes. Instead of using the exact physical model, we approximate
the measurements with an empirical pulse that confirms with physical
characteristics of our measurement device. We represent such pulses with
a finite number of trigonometric moments. Based on this approximate
representation, we use trigonometric interpolation for time-of-flight
super-resolution. Experimentally acquired tomographic measurements
validate our model. While this study is in a preliminary stage, it offers
a compelling solution to a bottleneck in photoacoustic imaging. Our
work raises several questions in the direction of classification of cellular
features and this will be addressed in our future studies.
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