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ABSTRACT   

We present, for the first time an in vivo implementation of dynamic light scattering (DLS) adapted to optical coherence 
tomography (OCT). Human bladder carcinoma tumors were grown in dorsal skin-fold window chambers fitted to male 
nude mice and imaged at a rate of 200 Hz using OCT. Maps of speckle decorrelation times (DT) were generated for 
regions of skin from individual mice as well as for regions containing tumor tissue before and after treatment with 
chemotherapy. Variations in DT were found between individual mice exhibiting different skin anatomy (primarily due to 
deterioration from the window chamber implantation). A significant difference in DT was also observed between tumor 
regions and surrounding normal tissue. Finally, maps of DT generated for tumor tissue treated with chemotherapy 
indicated a drop in DT at 24 and 48 hours after treatment. These preliminary results suggest the feasibility of using DLS-
OCT to measure intracellular motion as an endogenous contrast mechanism in vivo.  

Keywords: cell death, apoptosis, dynamic light scattering, optical coherence tomography, speckle decorrelation, 
window chamber model, treatment monitoring. 

 

1. INTRODUCTION 
In optical coherence tomography (OCT) imaging speckle intensity is dependent on the size, spatial distribution, density 
and optical properties of scatterers within the resolution volume of the imaging system [1]. In the case of living tissue, 
the motion of scatterers caused by the flow of red blood cells within the vascular network [2] or intracellular motion 
within the tissue [3] will induce dynamic changes in the speckle pattern. Examples of intracellular motion include, but 
are not limited to, the active motion of organelles along microtubules, the passive diffusion of macromolecules and 
vesicles through the cytoplasm and the reorganization of the cytoskeleton and cytoplasm during mitosis and apoptosis. 
We hypothesize that the rate of intracellular motion is related to the viability and metabolic state of cells and that it can 
be used as an endogenous contrast mechanism to detect cell death in the context of cancer treatment monitoring.  
Intracellular motion can be measured indirectly by detecting variations in speckle intensity in consecutively acquired 
OCT images. We have previously used speckle variance measurements to detect blood flow and changes in the vascular 
network of tumors before and after treatment with photodynamic therapy in mice [2]. In order to measure subtle 
differences in intracellular motion related to cell viability we have adapted a dynamic light scattering (DLS) technique to 
OCT.   

Dynamic light scattering techniques are based on measuring time-dependent fluctuations in scattered light intensity from 
a sample and relating these fluctuations to physical properties of that sample. This technique has been used extensively 
in industrial and chemical applications to determine the size distribution, molecular weights and the rotational motion of 
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particles in suspension [4]. Examples of the use of DLS for biological applications include the characterization of 
bacterial growth, the measurement of human sperm motility and the determination of blood flow velocities [5-8].  More 
recently, DLS has been applied to coherence-domain imaging by using holographic tissue dynamics spectroscopy to 
measure the response of multicellular tumor spheroids to environmental perturbations such as changes in temperature, 
osmolarity, pH and growth factors [9].   

The work described in this paper uses dynamic light scattering adapted to OCT (DLS-OCT) to detect variations in 
intracellular motion in a mouse tumor model. We have previously used DLS-OCT in vitro to measure changes in 
intracellular motion cause by apoptosis in acute myeloid leukemia cells treated with cisplatin [10] and in multicellular 
tumor spheroids to differentiate between the viable rim and necrotic core [11]. The current work is a feasibility study 
which expands this technique to an in vivo model and demonstrates the potential to use DLS-OCT for monitoring cell 
death during cancer therapy. Human bladder carcinoma cells were inoculated into dorsal skin-fold window chambers 
implanted into male nude mice. Mice were treated intravenously with cisplatin, a chemotherapeutic known to cause 
apoptosis [12], and imaged both pre-treatment and at 24 and 48 hours after treatment. The results obtained from this 
study demonstrate the potential to use DLS-OCT to measure intracellular motion in vivo, in particular for assessing cell 
viability during cancer treatment monitoring. 

 

2. METHODS 
2.1 OCT system 

A swept source OCT system was used for all in vivo studies. The laser design has been previously described in [13]. 
Briefly, the laser has a center wavelength of 1310 nm and a bandwidth of approximately 110nm with a scan rate of 
36kHz.  A data acquisition card (ATS460, AlazarTech) was used to acquire raw OCT signal continuously, which was 
transferred to the memory on a video graphics card (GeForce 9800 GT, NVIDIA). Custom-written kernels together with 
built-in CUDA libraries (i.e. cudpp, cufft) were used to manipulate and reconstruct OCT images on the multiple cores 
(112) of the GPU, which enables massive parallel data processing. This allows to dramatically enhance the data 
throughput when compared to processing using only the CPU, but also concurrently frees up CPU resources. Another 
advantage for processing data directly on the graphics card is that the reconstructed OCT image can be displayed without 
any additional memory transactions. The above setup allows real-time acquisition, processing, and display only limited 
by the A-scan rate of the laser.  

2.2 In vivo tumor model 

The in vivo tumor model used in this study consisted of human bladder carcinoma tumors grown within a mouse dorsal 
skin-fold window chamber model (WCM). Male athymic nude mice (NCRNU-M, Taconic) were implanted with a 
dorsal skinfold window chamber and a total volume of 10 μl of HT-1376 (ATCC) cells suspended in growth medium 
was injected into the skin flap at a concentration of 1.5 x 107 cells/mL.  Tumors reached 2-3 mm in diameter after 
approximately 3 weeks. All mice were treated with a tail vein injection of the chemotherapeutic drug cisplatin (100 
mg/m2) on the first day of imaging.  Data were acquired immediately prior to cisplatin injection and 24 and 48 hours 
after. All procedures including surgeries, chemotherapy and imaging were conducted under ketamine-xylazine 
aneasthesia administered intraperitoneally and with institutional approval at the Princess Margaret Hospital (Toronto, 
Canada).  A total of three animals were used for this pilot study. 

2.3 Data acquisition and analysis  

For each imaging time point, two-dimensional frames of OCT data were acquired continuously at 200 frames per second 
over approximately 8 seconds. Each frame contained 180 A-scans and covered a lateral distance of 3 mm. Data sets were 
acquired from 15 to 25 planes within the window chamber of each mouse. The imaging planes were spaced 
approximately 200 μm apart and covered both tumor regions and skin-only regions.   

Decorrelation maps were generated by calculating decorrelation times (DT) for each pixel location within an imaging 
plane of data. Each DT was determined by calculating the autocorrelation function of the fluctuating signal and 
extracting the line width at 1/e of the maximum autocorrelation value. We assume tissue to be a non-ergodic medium 
which requires removal of the static scattering component from the fluctuating signal in order to determine the correct 
autocorrelation function. For this study, the static component was determined for a given pixel using a 7 pixel by 7 pixel 
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