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ABSTRACT

High frequency ultrasound backscattered signals (20 - 60 MHz) from normal and apoptotic cell pellets

differ in their backscatter intensity, and analyzing these signals could assist in the non-invasive moni-

toring of cancer therapy. In this work, the reflection coefficients of the lattice prediction error filter are

used as feature set for parametric analysis and signal classification. The ultrasound (US) backscattered

signal databases consisted of combinations of treated (apoptotic) and untreated (normal) cells mixed

in different proportions. A 40 MHz commercial ultrasound imaging system was used. A classification

accuracy of 97-100% for normal and apoptotic signals were obtained with a model order 15. The pos-

itive results ascertain that the reflection coefficient is a potential tool for analyzing biomedical signals

such as US backscattered signals.

SOMMAIRE

Les ultrasons à haute fréquence backscattereddes signaux (20 - 60 mégahertz) de normal et les granules

apoptotic de cellules diffèrent dans leur intensité de rétrodiffusion, et l’analyse de ces signaux pourrait

aider à la surveillance non envahissante de la thérapie de cancer. Dans ce travail, les coefficients de

réflexion du filtre d’erreurs de prévision de trellis sont employés comme le dispositif a placé pour la

classification paramétrique d’analyse et de signal. Les ultrasons (US) backscattered des combinaisons

composées par bases de données de signal des cellules (normales) traitées (apoptotic) et non traitées

mélangées dans différentes proportions. Un système commercial de formation image d’ultrasons de

40 mégahertz a été employé. Une exactitude de classification de 97-100% pour les signaux normaux

et apoptotic ont été obtenues avec un ordre modèle 15. Les résultats positifs établissent que le coef-

ficient de réflexion est un outil potentiel pour analyser les signaux biomédicaux tels que les ultrasons

backscattered des signaux.

1 INTRODUCTION

During the cell division if the DNA is not replicated prop-

erly, the cell stops the division cycle and kills itself. This

self-induced destruction or programmed cell death is called

as apoptosis. However, at times cells lose ability to kill them-

selves and their uncontrolled cell division forms a tumor po-

tentially. Thus any dysfunction or deregulation in apoptosis

process leads to cancer. Cancer is a term for diseases in which

abnormal cells divide without any control and have the abil-

ity to invade nearby tissues and can spread through the blood

stream and lymphatic system to other parts of the body. Here

arises a need to suppress the fast and uncontrolled cell divi-

sion: one way is to forcefully induce apoptosis.

To this end, many cancer treatments are developed in-

cluding radiation therapy, chemotherapy, and immunotherapy

to kill the cells by apoptosis or necrosis. At this point, it is de-

sirable to have a technique that can detect apoptotic regions in

an organ or tissue which is undergoing cancer treatment (e.g.,

chemotherapy) in order to ascertain the success of the treat-

ment. At present, the evaluation of the cancer therapy is usu-

ally done by physical examination, assessing tumor shrink-

age, and less frequently by imaging. This is usually done

only after the patient undergoes the complete treatment cy-

cle, which takes few weeks or months. There is an increasing

need for a rapid therapy detection technique.

Various techniques (both invasive and non-invasive) have

been developed to determine whether the cells are undergo-

ing apoptosis. Biological techniques developed are invasive

and time consuming as well. For example, Positron Emission

Tomography (PET) though non-invasive, requires the injec-

tion of radioisotopes into the body and hence scans cannot

be performed repetitively. Other optical imaging methods us-

ing bioluminescence markers, though non-invasive, lack pen-

etration depth. It has been shown that high frequency ultra-

sound (HFUS) imaging in the range of 20-60 MHz can be

used to detect the structural changes during the cell death [1].
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HFUS imaging has become a powerful clinical tool and has

proved especially valuable in ophthalmology. It has several

advantages: it is non-invasive, non-ionizing, provides fine-

scale resolution (especially for small animal anatomy), cost

effective, safe and could be used to detect and identify a wide

variety of abnormal tissues.

A series of structural changes occur within a cell during

cell death. During apoptosis there is cell and nucleus shrink-

age, condensation of chromatin in the nucleus, and eventual

nuclear fragmentation. Studies over the past decade have

found that the HFUS (20-100 MHz) can be used to detect

localized variations in cell morphologies in tissues and cell

ensembles [1,2]. It is shown in [2] that ensembles of necrotic

(heat killed), cells undergoing mitosis, and apoptosis yield an

increased backscatter ultrasound signal intensity compared to

cells not exposed to the drug. US backscatter signals from

normal and apoptotic acute myeloid leukemia (AML) cell

pellets are shown in Figure 1. Spectral analysis techniques

have been used to analyze radio frequency (RF) echo signals,

and have made it possible to more specifically characterize

average cell structure changes in tissues and cell ensembles.

However, to increase the technique sensitivity and specificity,

other signal analysis techniques are explored.

Farnoud [4], using Burg-lattice based autoregressive

(AR) modeling successfully classified 100 backscatter sig-

nals from normal and apoptotic cells using machine-learning

algorithms with a classification accuracy ranging from 50%-

97 % with different classifiers. It was shown that non-linear

classifiers such as probabilistic neural networks with sigmoid

activation function provided the best accuracy. Bejar [5]

could monitor apoptosis by using cepstral coefficients (de-

rived from AR coefficients) as features and local discrimi-

nant bases (LDB) algorithm. This work used 39 signals of

the normal group and 36 signals of the abnormal group and

achieved an overall classification accuracy rate of above 90%.

Reflection coefficients, the parameters of the lattice filter, pro-

vide an alternative parameterization of signals. The reflec-

tion coefficients are computed from AR coefficients by using

Levinson’s recursions. There is a non-linear relation between

these two coefficients. In this work we explore whether the

reflection coefficients can potentially be used as signal fea-

tures for the classification. With this motivation, we intend

to find whether reflection coefficients may contain useful in-

formation about the US backscattered signal in such a way

that the classification of the normal and apoptotic signals can

be done by using simple and efficient time-domain pattern

analysis approaches. To the author’s best knowledge, this is

the first study exploring the use of reflection coefficients for

a biomedical signal classification application.

The block diagram of the proposed system is shown in

Figure 2. The US backscattered signals are analyzed by using

lattice prediction error filter parameters called reflection co-

efficients as features and classified by using simple classifier

based on maximum likelihood method. The paper is struc-

tured as follows: Section 2 details the lattice prediction error

filters, different algorithms to compute reflection coefficients

including the Burg-lattice method. Results are discussed in

Section 3, and conclusions are given in Section 4.

2 METHODOLOGY

2.1 Lattice Prediction Error Filter

The objective of a linear prediction filter is to select a linear

function that minimizes the prediction error for the given data

set. When the predictor is embedded in the linear filter, the

predictor can be viewed as linear filtering and is called as

prediction error filter (PEF).

The PEF is defined as a structure, which combines suc-

cessive samples of a signal multiplied by coefficients, so that

the output (prediction-error) power of the filter is minimized.

There are two kinds of PEF, depending on the form of pre-

diction error utilized. Based on a given sequence of input

samples, a forward PEF is designed to minimize the mean-

square value of the forward prediction error, defined as the

difference between the predicted value of the input one step

into the future and its actual value. On the other hand, a back-

ward PEF is designed to minimize the mean-square value of

the backward prediction error, defined as the difference be-

tween the predicted value of the input one step into the past

and its actual value.

Two basic adaptive filtering implementation schemes of

the prediction error filter are the tapped-delay-line (TDL)

structure, which is adapted by minimizing a single, global

error criterion, and lattice structure, in which the error is min-

imized independently for each stage of the filter. Depending

on the form of calculation used, the PEF may suffer from

lack of numerical stability. The lattice PEF, a form of adap-

tive filter, proposed by Burg [6] and independently derived

by Itakura and Saito [7] provides a solution to these prob-

lems. Lattice-structure has a number of advantages [8] over

the traditional TDL structure, among which are better resolu-

tion and/or stability, much better control of the filter conver-

gence and adaptive properties (due to the orthogonalization

of the data provided by the lattice, the adaptive convergence

rate appears to be particularly insensitive to the conditioning

or eigenvalue spread of the input signal sequence), the stage

by stage approach to the estimation problem provided by the

lattice filter offers the possibility of determining the optimal

model order for the process. The sensitivity of the lattice filter

parameters to round off noise and finite word length effects,

particularly in the normalized algorithms, seems to be less

than that of the equivalent TDL processor. Some important

characteristics of the lattice filters are [9]:

1. It is an efficient structure for generating simultaneously

the forward and backward prediction errors.

2. The lattice structure is modular: increasing the order of

the filter requires adding only one extra module, leaving

all other modules and its associated filter parameters the

same.

3. The various stages of a lattice are decoupled from each

other in the following sense: The memory of the lattice

(storing b0(n− 1), ..., bm−1(n− 1)) contain orthogonal
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Figure 1: (a) Normal signal and (b) Apoptotic signal acquired from cell pellets.

variables, thus the information contained in u(n) is split

in M pieces, which gradually reduces the redundancy of

the signal.

The lattice structure, with superior flexibility and structural

diversity find use in applications such as predictive filtering

[3], adaptive filtering [10], and speech processing [15]. The

lattice form filter realization first attracted great attention in

the late 1960s and early 1970s, with its superiority in finite

precision performance. Itakura and Saito were the first re-

searchers who utilized this lattice form for speech coding.

2.2 Algorithms for computing reflection coeffi-
cients

Lattice filters are a well-known signal analysis and coding

tool. Their parameters, the reflection coefficients, have a good

robustness to noise and quantization effects [16]. In the lat-

tice formulation, the reflection coefficients can be computed

by minimizing the norm of the forward residual or the back-

ward residual, or a combination of the two. There are several

methods to calculate the reflection coefficients of a lattice fil-

ter [11]. These methods depend on different ways of correlat-

ing the forward and backward residuals. A brief description

of four of these algorithms is given below:

The common basic objective of all the algorithms men-

tioned is to minimize the mean-squared forward and back-

ward errors, which are the outputs of each filter stage. In

other words, to obtain the lowest values of Fi(n) and Bi(n),
defined in the following equations:

Fi(n) = E
[
|fi(n)|2

]
(1)

Bi(n) = E
[
|bi(n)|2

]
(2)

where fi(n) is the forward residual, bi(n) is the back-

ward residual and E(.) denotes the expected value.

Differentiating these quantities with respect to the reflec-

tion coefficient gives two values for the coefficient, by min-

imizing the forward and backward mean square errors sepa-

rately. The equation

ρF
i (n) =

Ci−1(n)
Bi−1(n − 1)

(3)

minimizes the forward error, and

ρB
i (n) =

Ci−1(n)
Fi−1(n)

(4)

minimizes the backward error where Ci(n) is the expec-

tation of the negative cross-power of forward and backward

errors, given by

Ci−1(n) = −E [fi(n) � b∗i (n − 1)] (5)

2.2.1 Forward-and-Backward (F+B) Algo-
rithm

This is the most direct method suggested by Griffith [9] and

is the only algorithm where the forward and backward reflec-

tion coefficients are not complex conjugates of each other. It

simply uses ρf
i (n) and ρb

i (n) as the forward and backward

reflection coefficients respectively, i.e.,

ρf
i (n) = ρF

i (n) (6)

ρb
i (n) = ρB

i (n) (7)

As ρF � (ρB)∗ = 1 in almost all cases either or will be

greater than one, however, the reflection coefficients should
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Figure 2: Block diagram of the proposed system

have a value less than one for a stable filter. Hence, the sta-

bility is not guaranteed.

2.2.2 Forward/Backward-Minimum (M) Al-
gorithm

This algorithm provides an alternative to the F+B algorithm

by following the rule that if either ρF
i (n)or ρB

i (n) is greater

than one, then the other will be less than one and hence guar-

antees stability. This algorithm is suggested by Makhoul [13],

and is formulated as

ρf
i (n) = ρM

i (n) =
Ci−1(n)

max [Fi−1(n), Bi−1(n − 1)]
(8)

ρb
i (n) =

[
ρM

i (n)
]∗

(9)

2.2.3 Geometric-Mean (G) Algorithm
This algorithm is one of the two joint estimation algorithms

that try to minimize the forward and backward error expecta-

tions jointly and is derived by Itakura and Saito [7]. Here, the

reflection coefficients are computed by using the geometric

mean of the forward and backward error expectation.

ρf
i (n) = ρG

i (n) =
Ci−1(n)

[Fi−1(n) � Bi−1(n − 1)]1/2
(10)

ρb
i (n) =

[
ρG

i (n)
]∗

(11)

2.2.4 Burg Algorithm
Burg method is an order- recursive algorithm and was intro-

duced by J.P. Burg in 1967 [6]. This method uses a lattice fil-

ter and directly estimates reflection coefficients instead of au-

tocorrelation values. The algorithm is sometimes designated

as maximum entropy method because of its derivation in the

context of maximum entropy methods. The key step in the al-

gorithm involves minimizing the sum of the norm of the for-

ward and backward residual vectors, as a function of the re-

flection coefficient matrices. Since the computed coefficients

are the harmonic mean between the forward and backward

partial autocorrelation estimates, the Burg procedure is also

known as the Harmonic algorithm. This algorithm starts with

a first-order model and computes the prediction parameters

(reflection coefficients) for successively higher model orders.

The ith reflection coefficient is a measure of the correlation

between y(n) and y(n− i) after the correlation due to the in-

termediate observations y(n − 1), ...., y(n − i + 1) has been

filtered out. As the recursion constrains the filter poles to fall

within the unit circle stability of the filter is gauranteed. The

Burg method is particularly useful for estimating coefficients

from segments of unequal length. This method is based on

Levinsons recursions and estimates the AR filter parameters

through the associated reflection coefficients constraining the

AR coefficients to satisfy Levinson equations.

Lets assume the data measurements (US backscattered

signals) be {y(n)} for n = 0, 1, 2, ..., N − 1 and let us con-

sider the filter of order M .

The equations of the Burg-lattice filter are:

f0(n) = b0(n) = y(n) (12)

fi(n) = fi−1(n) + kibi−1(n − 1), 1 ≤ i ≤ M (13)

bi(n) = kifi−1(n) + bi−1(n − 1), 1 ≤ i ≤ M (14)

The corresponding ith reflection coefficient ki is ob-

tained by minimizing the sum of the square values of the for-

ward and backward prediction errors at the output of the ith
stage.

ki =
−∑

n fi−1(n)bi−1(n − 1)
1
2

∑
n

[
|fi−1(n)|2 + |bi−1(n − 1)|2

] (15)

As the Burg algorithm uses lattice structure, it inherits

the advantages of lattice structure such as stability, modular-

ity, computational simplicity and efficiency. Besides these,
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Figure 3: Burg-lattice Filter (adapted from [18])

it is proven to be an efficient linear prediction technique and

is probably the most widely known method to estimate AR

coefficients. Considering the advantages of Burg-lattice al-

gorithm, in this work its reflection coefficients are used for

parametric feature representation of the ultrasound backscat-

ter signals. We also experimentally checked the time invari-

ance property and robustness of the reflection coefficients of

the Burg algorithm. In time invariance test, reflection coeffi-

cients of an apoptotic signal and its delayed version (0.2 mi-

cro seconds) are calculated. From Table 1 it can be demon-

strated that the reflection coefficients are time invariant as the

value of the reflection coefficients are same. In robustness

test, an apoptotic signal is corrupted with random noise. The

reflection coefficients for both apoptotic and noisy apoptotic

signals are calculated. Then a measure of closeness of the two

sets of reflection coefficients is calculated by using the corre-

lation coefficient function. Table 2 shows the correlation co-

efficients obtained for different signal to noise ratio(SNR)s.

The reflection coefficients are identical for a SNR of 30 dB

and show strong correlations for lower SNRs (> 9dB).

2.3 Data Acquisition

AML-5 cells (at Ontario Cancer Institute) were cultured in al-

pha minimum essential medium (alpha MEM, Gibco 11900),

supplemented with Streptomycin and Penicillin at concentra-

tions of 100mg/L, and 5 % Fetal Bovine serum ( Hyclone).

The cells grew in 150ml of medium as a suspension, at con-

centrations of 5x105 cells/ ml, in a 370C, and 5% CO2 in-

cubator [19]. Pellets were made with untreated cells and

treated cells. Treated cells were exposed to 10ug/ml cisplatin,

a chemotherapeutic agent for 24 hours, to induce apoptosis,

before processing to form a pellet. Large volumes of the

treated and untreated cells were concentrated by centrifuga-

tion, at 2000rpm for 10 minutes, using a Sorval centrifuge.

The cell concentrations were then determined and volumes

prepared in phosphate-buffered saline, so that the final pel-

lets would have the desired percentages of the treated and un-

treated cells. The final pellets for scanning were centrifuged

at 3000rpm/ 10 minutes, in flat bottom cryo-tubes on a desk-

top swinging bucket centrifuge. The cell pellets were then

immersed in phosphate-buffered saline that acted as a cou-

pling medium for the ultrasound imaging and RF data col-

lection. During the data acquisition process, the cells were

kept at room temperature. The experimental set consists of

a pellet of the normal or untreated AML cells (which are not

exposed to cisplatin drug), and different mixtures of treated

and untreated cells. The mixtures of cells varied from 5%

treated cells mixed with 95% untreated to 100%treated cells.

The cells are imaged as a function of concentration of treated

cells (5, 10, 20, 80 and 100%). A 40 MHz f2 transducer with

a bandwidth of approximately 100% was used to image the

pellets of normal and apoptotic cells. The transducer was at-

tached to the VS40B ultrasound imager (Visualsonics Inc.,

Toronto, ON, Canada) which has the ability to select regions

of interest (ROI) from the B-scan images and store the raw RF

backscattered data of the ROI. The RF data was digitized at

500 MHz sampling rate and stored for further analysis. Data

analysis was performed in MATLAB (The Mathworks Inc.,

Natick, MA, USA). The experimental data were obtained in

Princess Margaret Hospital, Toronto, Canada. Experimental

details on the data acquisition can be found in [17].

2.4 Feature Extraction and Classification

The experimental ultrasound backscatter signals, like many

other biomedical signals could be non-stationary. They are

segmented into stationary segments in order to apply stan-

dard signal processing techniques such as parametric analy-

sis. In the present work, manual fixed segmentation method

is used. In the B-scan image as shown in Fig. 4, a small

portion of about 1 mm at the centre of the image (0.5mm

above and below the focal line of the transducer) is selected

as the segment. The segment length is of 650 samples. The

stationary (quasi-stationary) segments are then given to the

lattice prediction error filter and the reflection coefficients are

obtained by using the Burg-lattice algorithm. These reflec-

tion coefficients (partial correlation coefficients) are assumed
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ko -0.9459 0.9215 0.1836 -0.2651 -0.0626

kd -0.9459 0.9215 0.1836 -0.2651 -0.0626

Table 1: Reflection coefficients of original and delayed apoptotic signal. ko represents reflection coefficients of original
apoptotic signal and kd represents reflection coefficients of the delayed

SNR (in dB) 0 3 6 9 12 15 18 21 24 27 30

Correlation
Coefficients 0.30 0.38 0.46 0.54 0.65 0.76 0.85 0.91 0.95 0.97 1.00

Table 2: Correlation coefficient values of the original apoptotic signal and corrupted apoptotic signal with random noise
at different SNRs

Figure 4: Segmentation The central line indicates the fo-
cal line of the transducer and the rectangle indicated the
selected region of the image.

to have the discriminant statistical information of the signals

and were treated as features. Model order selection is im-

portant. With appropriate number of poles, it is possible to

reconstruct the signal. Typically, model order is twice the

number of spectral peaks of the signal. In this work, the peaks

were between 5 and 7. Hence model order of 15 is selected.

A snapshot of reflection coefficients of normal and apoptotic

signal after 24 hours with a model order 15 is given in the

Fig. 5.

Pattern classification is the next step after feature extrac-

tion in the pattern recognition process. As indicated in [14]

the four best-known approaches for pattern recognition are:

1) template matching, 2) statistical classifications, 3) syntac-

tic or structural matching, and 4) neural networks. In statisti-

cal pattern recognition, each pattern is represented by a set of

d features i.e., viewed as a d dimensional vector. When little

prior knowledge about the patterns to be recognised is known,

the best suitable design for the pattern recognition system is

to use training or a learning procedure. The classification is

operated in two modes: training (learning) and testing (clas-

sification). The classifier is first trained with the derived fea-

tures and then tested. Standard statistical classification meth-

ods use descriptive parameters and distance measures using

probablistic approaches. There are several distance measures

that could be used [5]: Euclidean distance measure, maxi-

mum likelihood measure, Mahalanobis distance measure, and

weighted distance measure. In this present work, the classifi-

cation of the ultrasound signals was done by using the max-

imum likelihood method as it most closely approximates the

Bayes classifier and obtains the best discriminative efficiency

if the probability density function of the extracted features are

multivariate Gaussian [5,14].

The classification accuracy is estimated by using leave-

one-out (LOO) method, one of the most popular validation

techniques. The LOO method is known to provide least bias

estimate [14]. In this method, one sample is excluded from

the dataset and the classifier is trained with the remaining

samples. Then the classification accuracy is determined by

testing the classifier with the excluded sample. This is re-

peated for all samples of the dataset. An independence be-

tween the test and the training set is maintained as each sam-

ple is excluded from the training set. The reference database

consists of two template reference vectors (one for normal

and the other for apoptotic signals). A test signal is extracted

from the database, the distance between the test signal and

the group of reference is measured. The test signal belongs to

the group which has less norm.

3 RESULTS AND DISCUSSION

Each pellet data consists of 43 RF lines collected from a

40 MHz transducer. As mentioned before, the ultrasound

backscattered signals from untreated cancer cells are termed

as normal signals and those from the cancer cells treated with

chemotherapeutic agent (which induces apoptosis) are termed

as apoptotic signals. The treated cancer cells are imaged as

a function of concentration of treated cells (5, 10, 20, 80 and

100%). The aim is to classify the signals at different concen-

trations of the treated cells. Statistical analysis of the signals

helps in extracting the discriminative features.

All the signals from a database are fed as input to the

Burg-lattice filter. The corresponding reflection coefficients

are extracted as features. The classifier is trained with the

extracted features and tested with an unknown signal. The

classification results are tabulated. We compared the results

obtained by using reflection coefficients as features with the

results obtained by using AR coefficients and cepstral coeffi-
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Figure 5: (a). A snapshot of reflection coefficients of signal from normal cells with a model order 15 and (b). A snapshot
of reflection coefficients of signal from apoptotic cells (after 24 hours of exposure to cisplatin) with a model order of 15.

% of treated
cells in pellets

Accuracy rate of
Normal Signals in
%

Accuracy rate of
Apoptotic Signals
in %

Overall classifi-
cation accuracy in
%

RC AR Ceps RC AR Ceps RC AR Ceps
5 100 83.72 95.35 100 88.37 97.67 100 86.05 96.51

10 100 88.37 97.67 100 90.69 100 100 89.54 98.83

20 97.67 83.72 88.37 97.67 86.05 90.70 97.67 84.88 89.54

80 100 88.37 97.67 100 97.67 100 100 93.02 98.83

100 100 88.37 97.67 100 95.35 100 100 91.86 98.83

Table 3: Classification accuracy with model order 15. RC-reflection coefficients, AR- autoregressive coefficients and
Ceps-cepstral coefficients

cients as features. The percentage represents the number of

signals classified accurately. The overall classification repre-

sents the number of normal and apoptotic signals classified

accurately.

Tables 3 show the classification accuracy rates obtained

by comparing the normal signals with apoptotic signals at 5,

10, 20, 80, and 100 % concentrations with a model order of

15. The classification accuracy rates indicate that the relfec-

tion coefficients provide the best classification of ultrasound

backscattered signals. The cepstral coefficients give better

performance than the AR coefficients. The reason could

be the following discussion. AR coefficients gives a rela-

tively abstract form of feature representation. However, cep-

stral coefficients are well suited for signals that contain echos

of a fundamental signature (ultrasound backscatter could be

cosidered as a signal resulting from a convolution of the pulse

sent (fundamental signature) with the scattering strength of

the scatterers) and hence may be better than AR. On the other

hand, reflection coefficient is also an abstract parameter and

for signals with reflected components, it might do a better

feature representation. The better performance may be due to

higher discriminant information being present in the derived

reflection coefficients from the ultrasound backscattered sig-

nals from the normal and the apoptotic cells

4 CONCLUSIONS

In this paper we evaluated the accuracy of lattice filter pre-

diction coefficients to differentiate the ultrasound backscatter

signals from normal and apoptotic cells which differ in their

intensity and frequency spectrum. This is the first work in

biomedical signal analysis, in which reflection coefficients

are used for parametric signal analysis and classification.

The positive results, demonstrate the potential discrimina-

tory ability by using reflection coefficients as features and

are worth studying. Modularity, the main advantage of lat-

tice structure, will make hardware implementation straight

forward. From a practical perspective, the lattice provides

an efficient, fast, modular and robust structure suitable for

hardware implementation and hence it can widen the scope

of research on the use of reflection coefficients.

Although this work has been focused mainly on eval-

uating the reflection coefficients to contain discriminant in-

formation about normal and apoptotic signals, further work

on this “hardware-friendly” DSP technique will be aimed at
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evaluting the performance of reflection coefficients by testing

with a larger database in real-time. Successful real-time per-

formance will allow to reach the ultimate goal ie., hardware

implementation and even extend its applications in analyzing

other biomedical signals.
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