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ABSTRACT 
 

The simultaneous photoacoustic assessment of oxygen saturation and red blood cell aggregation is presented. 
Aggregation was induced on porcine red blood cells using Dextran-70 at multiple hematocrit levels. Samples were 
exposed to 750 nm and 1064 nm for each hematocrit and aggregate size in order to compute the oxygen saturation. As 
the size of the aggregate increased, the photoacoustic signal amplitude increased monotonically. The same trend was 
observed for increasing hematocrit at each aggregation level. The oxygen saturation of aggregated samples was 30% 
higher than non-aggregated samples at each hematocrit level. This suggests that the presence of red blood cell aggregates 
impairs the release of oxygen to the surrounding environment. Such a result has important implications for detecting red 
blood cell aggregation non-invasively and making clinical decisions based on the simulatenous assessment of oxygen 
saturation.  
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1. INTRODUCTION 
 

Estimating a patient’s need for oxygen is an important assessment of the patient’s vital signs as life cannot thrive in the 
absence of oxygen. Monitoring the oxygen saturation (SO2) of blood is a routine method for assessing clinical conditions 
where oxygenation levels fluctuate. The technique is useful in many settings where the patient’s oxygenation is unstable 
(i.e. in intensive care, operating rooms, and emergency or other hospital wards) for determining the effectiveness or need 
for supplemental oxygen1. Typically derived from the hemoglobin concentration, SO2 is crucially important in mapping 
brain hemodynamics in various applications such as during responses to sensory simulations2. In addition, monitoring of 
SO2 has been used to evaluate the treatment of tumors with chemotherapy and radiation therapy3, monitor the healing of 
wounds4 and even study gene expression5.  
 
Non-invasive monitoring of SO2 is commonly achieved through the near-infrared spectroscopy (NIRS) method6. NIRS 
relies on 2-wavelength emissions, typically through translucent body parts (i.e. finger tip or earlobes). At the 
wavelengths typically used (660 nm and 910 nm), the absorption of oxyhemoglobin (OHb) and deoxyhemoglobin (DHb) 
differs significantly. Therefore, the OHb/DHb ratio can be calculated from the ratio of the absorbance at each respective 
wavelength. However, a major limitation of NIRS is the small penetration depth due to significant light scattering in 
tissue. In addition, NIRS is unable to distinguish between venous and arterial blood due to poor spatial resolution7. 
Furthermore, this technique does not provide a complete measure of circulatory sufficiency. It can provide false SO2 
readings based on the blood that arrives at the instant the measurement is taken despite the fact tissue can be hypoxic or 
hemoglobin insufficient (i.e. anemic)8.  
 
Photoacoustic (PA) imaging can potentially overcome some of these limitations of NIRS in monitoring SO2. The 
primary advantage of PA imaging lies in the fact that the scattering of sound waves detected by passive ultrasonic 
transducers is 2-3 orders of magnitude smaller than the scattering of light waves thus enabling the probing of deeper 
structures due to lower attenuation9. By using multiple wavelengths of illumination, PA imaging has been able to not 
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Here, ( ) ( , ) ( , )OHb DHbε λ ε λ ε λΔ = − is the difference in extinction coefficient ε  for each wavelength of illumination
λ . 
 

3. RESULTS AND DISCUSSION 
 

Figure 3 contains the summary of the PA SA of each RBC sample exposed to both illumination wavelengths. The SA is 
plotted as a function of both hematocrit and aggregation level (determined by the [Dex-PBS]). For both exposure 
wavelengths, the SA increased monotonically with increasing hematocrit (~1.3x per doubling hematocrit level). This is 
in accordance to previous reports which suggest that the increase is due to the increase in the concentration of optical 
absorbers (the RBCs)13,14,19–21. The relationship between the PA SA and hematocrit suggests that it might be possible to 
use PA techniques as a non-invasive means of estimating the hematocrit, an improvement over other non-invasive 
methods such as ultrasound backscattering where the relationship between the ultrasound backscatter and hematocrit is 
relatively complex22.  
 
Increasing aggregation levels resulted in changes in the PA SA as shown in figure 3. For a [Dex-PBS] of 3%, the SA was 
highest for all hematocrit levels.  The 1% and 8% [Dex-PBS] were nearly identical for all hematocrit levels (p = 0.2). 
The SA for the highest aggregation level was ~1.6x higher than the non-aggregated sample (0% [Dex-PBS]) for both 
wavelengths of illumination (p = 0.001). This can be attributed to the fact that the 3% [Dex-PBS] forms the largest 
aggregate while the 1% and 8% concentrations yield smaller aggregates as previously reported through independent 
measures of aggregation 23,24. The SA for the 1064 nm exposure was ~1.3x smaller than the 750 nm exposure for all 
samples recorded. This could be attributed to the oxygen-depended optical absorption of the RBCs9.  

 
 Figure 3: PA SA for (a) 750 nm and (b) 1064 nm exposures of RBC samples at 10%, 20% and 40% hematocrit 
 and 1%, 3% and 8% [Dex-PBS] levels. The 0% [Dex-PBS] corresponds to the non-aggregated sample.    
 
Figure 4 shows the SO2 computed using equation 1 for the RBC samples examined. A linear increase in the SO2 with 
increasing hematocrit was observed with an average increase of ~7% per doubling of the hematocrit level. The largest 
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SO2 was recorded for the 3% [Dex-PBS] samples which was ~30% higher than the non-aggregated case (p = 0.00001). 
The 1% and 8% samples were nearly identical and ~20% higher than then non-aggregated samples (p = 0.00003). These 
results suggest that the presence of aggregation increases the SO2 level. As this oxygen is bound within the aggregate, 
the ability of the clustered RBCs to release oxygen to the surrounding environment is diminished. This has important 
implications for adequate oxygen transport to surrounding tissues and further investigations are warranted in order to 
understand the role of RBC aggregation in vascular pathologies such as atherosclerosis. 
 
Similar increases in SO2 with aggregation have been reported using a microscope system coupled with a 
spectrophotometer17. The impaired oxygen diffusion due to aggregation is attributed to an increased layer of 
aggregant/plasma engulfing the RBC aggregates. The fact that PA imaging is capable of measuring changes in 
oxygenation and RBC aggregation simultaneously suggests that it could potentially be used for making assessments of 
RBC aggregation in diseased tissues while providing information about the level of oxygen and the capacity of the RBCs  
to deliver oxygen for the tissues of interest.  
 

 
 Figure 4: The SO2 calculated using equation 1 for all blood samples for 3 hematocrit and 3 aggregation levels. 
 The 0% [Dex-PBS] corresponds to the non-aggregated sample.    
 

4. CONCLUSIONS 
 

This paper presents the potential for using PA techniques for assessing oxygenation of blood samples in the presence of 
RBC aggregates. The results of this study suggest that in the presence of RBC aggregation, the release of oxygen to the 
surrounding environment is impaired. It might be possible to use PA imaging for assessing the presence of RBC 
aggregation in circulatory disorders while measuring the oxygenation of the same area and thereby monitoring the need 
for oxygen to the surrounding tissues. 
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