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Abstract

Vascular models model the effects of blood flow on tem-
perature distributions during hyperthermia. These mod-
els explicitly analyze large vessel cooling for a limited
number of vessels and use continuum models to predict
average temperatures of perfused tissues. The analysis
has traditionally been performed by assuming a constant
Nusselt number to calculate heat transfer to thermally
significant vessels. This assumption has a questionable
validity during hyperthermia, especially for transient
protocols. A vascular model is presented that does not
require heat transfer coefficients to calculate heat trans-
fer to/from thermally significant vessels; rather, the en-
tire tissue/blood vessel domain is discretized and solved
by finite differences. Results of modeling a large vessel
embedded in perfused, heated tissue will be presented
for two continuum models of microvascular heat trans-
fer: the bioheat transfer equation (BHTE) and the ef-
fective thermal conductivity equation (ETCE). Further-
more, experimental data are presented that indicate the
validity of model predictions and demonstrate the tem-
perature gradients caused by large vessels in heated tis-
sues in a vitro setting.

Nomenclature

¢ = specific heat capacity (J/kg/°C)

dr = grid spacing in the radial direction (¢m)

dz = grid spacing in the axial direction (cm)

k = thermal conductivity (W/cm/°C)

k.¢; = scalar effective conductivity of tissue (W/ecm/°C)

r, z = radial and axial coordinates (cm)

s = fraction of spacing dx for a non-uniform grid
u(r) = velocity of blood (cm/sec)

w = volumetric perfusion rate (g/cm?/s)

P = volumetric power deposition rate (W/cm?)
T = temperature (°C)

«a = best fit parameter equating perfusion and effective
conductivity (g/cm3/s)~1

8 = blood vessel diameter (¢m)

¢ = angle in cylindrical coordinates (rad)

p = density (g/cm?)

A= grid generation parameter

subscripts

art = arterial

b = blood

e = east node

1 = node number
n = north node
s = south node

t = tissue

w = west node

Introduction

Prediction of temperature profiles for hyperthermia
treatments is central to thermal dosimetry (Roemer
1990). The temperature information assists in the plan-
ning and assessment of treatments since therapeutic out-
come is a function of temperature and exposure time. To



calculate temperature distributions during treatments
models of tissue power absorption and cooling are re-
quired. For the latter, accurate formulations of bioheat
transfer in perfused tissue are necessary. Vessels can be
classified according to their convective strength: ther-
mally significant and thermally insignificant. While the
division is somewhat arbitrary (Baish 1992), it is neces-
sary since all vessels in a heated filed cannot be modeled
explicitly. The effects of the microvasculature are repre-
sented by a term that describes the collective effects of
the smaller vessels of the circulation. The two prevalent
models of microvascular heat transfer are the bioheat
transfer equation (BHTE) and the effective thermal con-
ductivity equation (ETCE). Tt is not clear which contin-
uum model better describes microvascular heat transfer
and limited data are available in the literature that com-
pare the two models (Crezee ef al. 1991; Moros et al.
1993a).

To estimate heat transfer to thermally significant ves-
sels investigators have used constant heat transfer coeffi-
cients based on model problems such as the Graetz prob-
lem (Mooibroek and Langendijk 1991; Chen and Roemer
1992). The applicability of this approximation to hyper-
thermic situations is not clear. It implicitly assumes
that the normalized vessel steady state radial tempera-
ture profiles are independent of axial position for ther-
mally developing and developed blood, independent of
perfusion of the surrounding tissues and of vessel shape.
Furthermore, it implicitly assumes that the normalized
radial temperature profiles are time invariant during tis-
sue heating. There is evidence that the thermal entrance
length for large vessels is a significant portion of the ves-
sels length and that microvascular cooling, as modeled
by an effective conductivity, can modify the heat transfer
coefficient (Crezee and Lagendijk 1992). Moreover, ves-
sel shape can modify heat transfer to vessels; elliptical
channels of eccentricity ¢=0.25 (that may be expected
in the venous system) show differences in heat transfer
coefficients of almost three orders of magnitude between
the endpoints of the major and minor axes, albeit the
differences average out when integrated over the circum-
ference (Basmadjian 1990). Finally, since a major frac-
tion of a hyperthermic treatment is in the tissue heating
and cooling phases, a steady state cannot be assumed
(Sapareto and Dewey 1984). Heat transfer to vessels
for step changes in vessel wall temperature is greater
until a steady state is achieved (Soliman and Chambre
1967). Therefore, a vascular model is required that can
overcome these ambiguities. The model should produce
accurate steady state and transient temperature data to
predict thermal gradients near large vessels.

Methods

The solution domain is separated into two fields: the
blood domain (consisting of the regions enclosed in large
vessels) and the tissue domain (representing perfused tis-
sue). The problem is solved for the vascular and tissue
geometries in a fashion similar to the one proposed by
Moros et al. (1993b). In this formulation, no prior as-
sumptions are made about heat transfer to vessels; the
conservation nature of the numerical methods implicitly
model this. Therefore entrance region variations, the
perfusion dependence of heat transfer coefficients and
transient effects are included in the calculations.

The equations used to model heat transfer are solved
numerically in cylindrical coordinates assuming a fully
developed incompressible fluid with a parabolic velocity
profile and 8 symmetry:
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The vessel domains are modeled by equation 1 and the
tissue regions by 2. Power absorption in the vessel and
the tissues could be adjusted to model for ultrasound
heating (P; > Py) or microwave heating (P; ~ P;). The
cooling effects of the microcirculation can be modeled by
the Pennes model by setting k.7 = k; in 2 and adjusting
wy to the appropriate value. Similarly, for the ETCE
model wy is set to zero and k.;; assigned the value of
interest. Furthermore, the model allows simultaneous
use of the continuum models, as proposed by Lagendijk
et al. (1992).

The equations were solved by the method of finite dif-
ferences. The conductive terms in the equation were
discretized according to central difference formulations
and the convective terms according to upwind differences
(Patankar 1980). The resulting matrices were solved by
using the alternate-direction implicit method (ADI), al-
lowing modeling of steady-state and transient conditions
(Croft and Lilley 1977). To handle conductivity disconti-
nuities at the vessel-tissue interface for the ETCE model,
the harmonic mean of the vessel and tissue conductivi-
ties was used at the vessel wall (Patankar 1980). This is
necessary since the ratios of the conductivities k.zs/kp
at the vessel wall can be as high as 10 to 20. A variable
grid was utilized to concentrate the grid points near the
vessel by linearly increasing the radial step size from the
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FIGURE 1: Comparison of analytical and computa-
tional solution for the Graetz problem with plug flow
at different depths (<u>=10cm/s). Good agreement
between numerical and analytic solution for 39 nodes
radially.

vessel center. A brief derivation of the finite difference
equations 1s given in the appendix.

Results

The numerical results were compared to analytical solu-
tions of simplified problems. To compare radial temper-
ature profiles in the flow, the Graetz problem with plug
flow was used as a benchmark (Shah and London 1978).
The maximum deviation found was ~ 2.0% for the range
of parameters used in the simulations and the minimum
amount of radial intravascular nodes (figure 1). To com-
pare the tissue temperature predictions, a large velocity
was assigned to the flow equivalent to setting the sur-
face of the blood vessel to a constant temperature. The
analytical and numerical solutions agreed for a range of
power depositions and perfusion values (Kolios 1994).
Simulations were performed to assess how microvas-
cular heat transfer modifies thermal gradients near large
vessels in heated tissues. The parameters used are shown
in table 1. Examples in this work are based on a
6=1.4mm blood vessel assigned an average blood veloc-
ity of 10cm/s. The simulation geometry is shown in fig-
ure 2. The vessel is located at the center of a cylinder,
within a heated volume of radius 2 cm representing a hy-
pothetical case of tissue heating. The radial boundaries
are kept at body temperature and an adiabatic condi-
tion is implemented for both axial boundaries. Uniform
power absorption is assumed throughout the entire field.
Bioheat transfer in perfused tissues was modeled accord-
ing to the BHTE or the ETCE. The system was allowed
to reach a steady state and the temperatures were nor-

Cylindrical model for blood vessel cooling
simulations

Heated volume (r=2 cm)

lood
vessel

FIGURE 2: Geometry of computer simulations. Three
concentric cylinders represent the tissue volume (r=
4em), heated region (r= 2cm) and the blood vessel (r=
variable).

malized to the maximum temperature in the field to
compare the data. Temperature gradients in the ab-
sence of perfusion dominate the heated field, extending
well beyond the oxygen diffusion limit for the vessels.
For vessels with 6§ > 0.1 mm the effects persist for axial
distances greater than the physical lengths of the vessels,
and cool a significant portion of tissue. Nevertheless,
vessel wall temperatures can be higher than the tem-
peratures of the mixing-cup or center-line temperatures
of the blood itself. Figure 3 illustrates the center-line,
mixing cup, vessel wall and maximal tissue temperatures
for a 6=1.4 mm diameter vessel, embedded in perfused
tissue (w;=0.008 g/cm?3/s, BHTE model). The radial
gradients within the vessel allow the vessel wall temper-
ature to be ~ 10-20% higher than the center-line blood
temperature. For vessels of diameter § < 0.2 mm, the
temperature deviation within the vessel is insignificant.
Increased perfusion of the surrounding tissue, according
to the BHTE, results in more efficient blood heating and
reduction of the radial and axial tissue temperature gra-
dients. The thermal equilibration lengths (TEL) of the
vessels, defined as the distance required for the blood
to reach 63% of the surrounding tissue temperature, re-

TABLE 1: Listing of physical parameters used in simu-
lations (Duck 1990)

tissue specific heat capacity (J/g/°K):  4.180
tissue density (g/cm?): 1.000
tissue conductivity (W/cm/°K): 0.006
blood specific heat capacity (J/g/°C): 0.006
blood density (g/cm?): 1.000

perfusion rate (g/cm?/s): variable
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FIGURE 3: Comparison of center-line, vessel wall and
mixing-cup blood temperature of a (6=1.4 mm) blood
vessel embedded in heated tissue (w;=0.008 g/cm?/s).

duces with increased perfusion. For example, a vessel
of 6=1 mm (<u>=8cm/s), the TEL of the center-line
temperature reduces from 32 c¢m for no perfusion to 15
cm for a perfusion of wy= 0.008 g/cm?/s. Microvascular
cooling reduces the maximum temperatures in the field
and shapes the temperature profile according to the vol-
umetric power deposition patterns. The change in the
radial profiles as a function of perfusion for the BHTE
is shown in figure 4a.

When microvascular cooling is modeled as an effec-
tive conductivity, similar effects are observed. Increased
perfusion (k.j¢) results in a reduction of the thermal
equilibration lengths for the large vessels. For the =1
mm vessel, the center-line TEL reduces from 32 cm to 9.6
cm for a k.py of 0.04 W/em/°K. Furthermore, the vessel
walls are at high temperatures due to the reduced ther-
mal resistance of the surrounding tissue (Crezee and La-
gendijk 1992). This shown in figure 4b. Direct compari-
son of the data for the two models requires a functional
relationship between the effective conductivity and vol-
umetric perfusion of tissue.

Crezee and Lagendijk (1990), in experiments in fixed
bovine kidneys, provided an expression that relates ef-
fective conductivity and volumetric perfusion based on
analysis of the delay and relaxation times of transient
temperatures near a heat source. Assuming a linear re-
lationship for volumetric perfusion and effective conduc-
tivity, they found:

ke = ki (1 + awb) (3)

where o = 0.12 ml/100g/min~'. This relationship was
utilized to compare the profiles of figures 4a and 45.
The radial temperature profiles differ for the two models;
the ETCE predicts higher temperatures near the vessel
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FIGURE 4: Simulated radial temperature profiles near
large vessels: effect of perfusion according to the (a)
BHTE and (b)) ETCE model. Profiles normalized to
maximum temperature at z=4 cm for a 6 = 1.4mm ves-
sel (<u>=10.5cm/s). Similar line styles in graphs cor-
respond to equivalent effects according to equation 3.

wall. For perfusions of 0.02 g/cm?®/s, the vessel wall
temperature according to the BHTE is as at ~35% of
the maximum tissue temperature, while for the ETCE
~88%. While the BHTE predicts a shortening of the
TEL and higher temperatures near the large vessel for
increased perfusions, the results are comparable to the
ETCE model only for low tissue perfusions.

The reduction of the TEL and the increased vessel wall
temperatures for the ETCE is due to the drop in ther-
mal resistance between the vessel and the surrounding
tissue (Crezee and Lagendijk 1992). In the case of the
BHTE, similar reductions are due to the nature of tissue
cooling: for high perfusions, the temperature distribu-
tion shapes to the power deposition pattern resulting in
steeper temperature gradients closer to the large vessel
and greater heat transfer. Ultimately, the theoretical
models need to be validated in an experimental system.
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FIGURE 5: The experimental set-up consists of four
main components: two perfusion circuits (for the phan-
tom and the heat source), a scanning system and a ther-
mometry data acquisition system. Thermocouples are
scanned in steps of 100um, and asterisks represent loca-
tions where temperature is measured.

Experimental results

The experiments are designed to examine temperature
gradients near sources or sinks of heat and their per-
fusion dependence, and are similar to the experiments
described by Crezee and Lagendijk (1990). The set up
(figure b) consists of a fixed porcine kidney phantom
(Holmes et al. 1984) perfused by a peristaltic pump,
an 18 Gauge hot water needle source traversing the kid-
ney cortex, a scanning system (Hurst magnet rotor SLS-
4014-002 model, Princeton, Indiana), that increments 50
pm diameter type K thermocouples in steps of 0.1 mm
(5% per step) and a thermometry data acquisition sys-
tem (£0.1°C, Brown et al. 1992). The dynamic phan-
tom is immersed in a waterbath kept at room temper-
ature. Details of the experimental set-up can be found
elsewhere (Kolios 1994). The radial temperature profiles
created by the source are recorded and their perfusion
dependence examined. Figure 6 illustrates the steady
state temperature profiles obtained in the absence of kid-
ney perfusion. The experimental data match the the-
oretical predictions fairly well (a logarithmic tempera-
ture profile for a simple cylindrical conduction problem).
Upon perfusion, thermally significant vessels create re-
gions of localized cooling (figure 7). X-ray angiography
examination revealed a 6=0.6 mm vessel close to the
source in the region of the excess cooling (figure 8). This
is a striking example of localized discrete vessel cooling:
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FIGURE 6: Experimental values vs. theory in the ab-
sence of perfusion. Logarithmic temperature profile in-
dicates good agreement.

temperature gradients of 6°C/mm are observed close to
the thermally significant blood vessel. Continuum mod-
els of heat transfer could not predict this temperature
profile.

To compare the experimental data with the simula-
tion results, the effects of the vessel on the temperature
profile must be 1solated from the temperature gradients
of the heat source. Assuming that

1. the logarithmic normalized temperature profile cre-
ated by the the source is not significantly altered by
perfusion (which should hold if perfusion acts as an
effective conductivity (Crezee and Lagendijk 1990)
or for low perfusion values)

2. the presence of the vessel does not significantly alter
the maximum temperature achieved in the heated

field

then the normalized temperature curves for the cases
of the perfused and non perfused kidneys can be sub-
tracted to isolate the individual vessel effects. In the ab-
sence of the thermally significant vessel the subtracted
profile should be a straight line along the radial axis.
The temperature profiles normalized to the maximum
temperatures in the field are compared in figure 9. The-
oretical data are obtained for depths of 2 and 3 cm.
These values were chosen by assuming the heated field
in the kidney to radially extend symmetrically about the
source according to the logarithmic temperature profile.
The velocity of the the blood was assigned values en-
countered in wvivo for a vessel of §=0.6 mm diameter
(<u>~ 6em/s). Despite the uncertainty in the input
simulation data and experimental parameters the curves
display similar trends This illustrates the ability of the
model to calculate temperatures near large vessels. The
analysis of the perfusion dependence of thermal gradi-
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FIGURE 7: Radial temperature profiles in the presence
of a thermally significant vessel (estimated § ~0.6 mm).

FIGURE 8: Orthogonal x-ray angiography views of the
kidney phantom. Note the presence of a thermally signif-
icant vessel close to the source (at the top of the figure).

ents In tissue near sources or sinks of heat is still in
progress.

Conclusions

Temperature gradients caused by thermally significant
vessels can extending at least 1-2 mm from the vessel
and cool adjacent tissue. Improved vascular models have
been introduced to implicitly incorporate of the effects
of thermal entrance regions, local heating, vessel shape
and transient temperature gradients on heat transfer to
large vessels. Parametric studies demonstrated that per-
fused tissues, modeled either as a heat sink or an effec-
tive conductivity, have the ability to reduce the TEL
and increase tissue and vessel wall temperatures of large
vessels. Direct comparison illustrates that microvascular
heat transfer according to the ETCE is more effective in
vessel heating than the BHTE for equivalent volumetric
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FIGURE 9: Simulations and experimental data. Al-
though modeling different situations, a general agree-
ment in the profiles is seen. Simulation data for depths
of 2, 3cm for a §= 0.6 mm vessel with a velocity of 6cm/s

(wp=0.002gr/cm?3/s, BHTE).

perfusion values, resulting in shorter TELs and higher
tissue temperatures near the vessel. High spatial reso-
lution experiments indicate that vessels of diameter ~
0.6 mm can induce temperature gradients of 6°C/mm
in heated regions. Comparison of the theoretical simu-
lations and the experimental data, albeit modeling dif-
ferent situations, shown a general agreement in predic-
tions of temperature profiles. The data also illustrate
the importance of high temperature spatial resolution
for the interpretation of in wivo temperature profiles;
scanning steps of 1 mm, typical for bioheat transfer ex-
periments, can miss significant vessel information and
potentially lead to erroneous interpretation of profiles.
This is clearly seen in figure 7. Provided that blood ves-
sel geometry and flow information can be obtained by an
imaging modality and accurate models of microvascular
bioheat transfer are utilized, thermal modeling should
provide accurate temperature profiles of heated tissues.
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Appendix

The finite difference approximations to the derivatives
of the bioheat equation are derived for nodes with vari-
able conductivity and uneven spacing in the radial direc-
tion. Following the notation of figure 10, the derivative
at point ¢ can be calculated by taking the weighted av-
erage of the two one-sided derivatives between nodes (w
and c¢) and (c and e), which define a control volume. The
approximation to the first derivative is becomes:

dT se d

T
c — r= k
dr| Se + 5w dr| W +

Sw

Se + Sw

ar

k dr |r=EkE (4)
Assume that nodes e and ¢ have a conductivity k., and
that node w has a conductivity of k,. The conductiv-
ities kE and kW can be approximated by kE=k, and
kW = (keky)/kekw = kn , where kp is the harmonic
mean of k. and k,, (Patankar 1980). Assuming a piece-
wise linear profile for the temperature variation in be-
tween the nodes of the grid, 4 becomes:

de s T Ty Sw de—1T:

— = k
dr Se + 5w Sy dr h+5€—|—5w se dr

ke (5)

Note that for k. = kp and s,=s.=1, the derivative 1s
equivalent to the central difference formulae. The second
derivative can be calculated in a similar fashion and is
given by the difference of the two one-sided derivatives,
estimated at W and E, divided by their distance.
Differentials in the axial direction were discretized ac-
cording to central differences for conductive gradients
and upwind differencing for convective gradients. The
expressions were substituted in equations (1 and 2). To
solve the algebraic problem, the Alternate Direction Im-
plicit method was used. The algorithm separates each
timestep into two parts, for which it solves one coordi-
nate direction implicitly in the first part and the other
coordinate direction implicitly for the second part. The

time discretization is split into two steps. In the first
AT -Te)

step, the time derivative is replaced by % = = ,

. . 1_ 1/2
while in the second step by % = %. Upon sub-

stitution and solving for the r-direction implicitly and

the unknowns Tcl/z, ul)/z, /2 (letting r = idr;):

Se kh Sw ke 1
(56 + Sw) Sw (Se + Sw) Se !

2ke 2k -1 —2  Tp G 1/2
+<_ Se Sy )(Se+5w) )drl 24t T

+ Qkh Se kh
(56+5w) Sw ? (56 +5w) Sw

) Ti/eri—Z

+ 2k suke T2 gr, =2 =
(56+5w) Se ? (56 +5w) Se

rycp 1
_%‘i‘wb Cp (Tc_ Tart)_Q+
Ty Cp Up (TS—TC) T, —2T.+ T,
dz dz?

(6)

The terms on the right hand side of the equation and
all the terms in the parenthesis are known. A system
of n equations with n unknowns results when the above
expressions are written for each node in the solution do-
main. The second and final step calculates the solution
for T}, T} and T!. Repeating the above procedure and
solving for z implicitly results in a similar expression.
Note that three unknowns result from each equation,
and thus if the equations are written in matrix formaft,
the solution matrix will be tri-diagonal, simplifying and
accelerating the solution procedure (Ames, 1979).

To generate a uniform grid, each coordinate location
is represented by r(i)=idr where i is an integer. In this
work dr is varied. Assume each coordinate location is
given by r(i)=iA;, where A;= f(i). In this case, the
spacing between two locations on the grid is a function
of 1 and is given by

dr; = 1A; — (Z — 1)Ai_1 for ¢ > 0, (7)

The function A; determines the grid spacing. A linear
increase in grid spacing was used, concentrating points
near the blood vessel. To linearly increase the grid spac-
ing, A; was defined as:

where A,,;, determines the minimum node spacing and
Ajne a parameter that determines the rate of change of
node spacing. According to the above, the node spacing
18

dr; = 1A; — (Z — 1)Ai_1 =Anin + (22 — 1)Amc (9)



for 7 > 0, increasing linearly with i. Note that A; can be
defined as any function of i, and thus other grid spacings
can be derived by defining A; accordingly (as a sinusoid
for example). In this work, for each node i, dr; and
driy1 were calculated using the above equations. The
parameters A, and A, were set to 1.6 10™°mm and
2.0 10~ 5mm respectively and i typically varied from 0 to
600. The axial spacing was dz=1mm. The parameter sw
was set to 1 and thus dr; was used as the reference node
spacing in figure 10. Hence, se= drd’%. Utilizing the
finite difference relationships derived in this appendix
and spacings according to the above, the system was
solved, giving a unique solution for each node (Kolios

1994).
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