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Abstract—Synthetic transmit aperture (STA) imaging has been 

widely studied in ultrasound imaging. Usually the number of 

receiving channels is the same as the number of the array elements 

(N). When the number of receiving channels is large, such as the 

matrix array for 3D imaging, the system cost will be high due to 

the receiving electronics for each element. Therefore, it is 

desirable to reduce the number of receiving channels while 

keeping a large number of transmit channels. In this paper, we 

studied with Field II Hadamard-encoded synthetic transmit 

aperture imaging systems with about N/2, N/4 and N/8 receiving 

channels. There were N Hadamard-encoded transmission events 

for one frame of image. The pseudoinverse was applied to the 

acquired RF data to estimate the equivalent signal in the 

traditional STA. We found that applying the transmit-receive 

symmetry of RF signals can reduce the receiving channels by half 

without compromising image quality. We also compared different 

methods to encode the receivers when the receiving channels were 

reduced to about N/4 and N/8.  

Keywords—Hadamard encoding, sparse array, psudoinverse, 

encode receiver 

 

I.  INTRODUCTION  

 One major limitation of synthetic transmit aperture (STA) is 
the loss in the SNR of RF data because only one or a few 
elements are used in each transmission. Hadamard matrix has 
been proposed to encode either the amplitude [1] or the delay 
[2] of transmissions to improve the SNR in STA. Generally, 
multiple elements can be coded according to the Hadamard 
matrix to fire simultaneously to increase the transmitted power. 

In STA, the probe array has a fixed number of elements, 
which are usually stationary [3]. The number of receiving 
channels of an ultrasound imaging system is usually the same as 
the number of array elements. However, to generate a 3D 
ultrasound image, the 2D transducer array is usually required. 
Meanwhile, to avoid the grating lobes, the pitch of the array has 
to be less than half a wavelength [4]. When the number of 
receiving channels is large, the cost of the hardware system will 
be prohibitively high due to the electronics associated with the 
receiving channels for each element [5]. Therefore, many 
innovations in designing the effective sparse array have been 

investigated in [6-12]. However, the quality of images cannot be 
preserved due to the reduction of the number of elements. There 
are grating lobes when using a periodic sparse array, while 
random sparse arrays suffer from the significant side lobes [13].  

In this paper, we propose a method to spatially encode the 

transmission with Hadamard matrix to improve SNR and to 

encode the receiving element by combining the receiver 

elements. The transmit-receive symmetry property of the RF 

channel data was also used to solve for the equivalent signal in 

the traditional STA. A triangle pattern was designed to reduce 

the number of receiving channels for each transmission event. 

Then, pseudoinverse was used to decode the acquired RF 

signals to obtain the equivalent traditional STA data. The 

reconstructed results from this method have better contrast-to-

noise ratio (CNR) compared to the periodic sparse array.  

In section II, the theory of proposed method will be 

presented. Then the simulation parameters and implementations 

will be shown. The image quality metrics will be presented and 

applied to the images. In section III, the simulation results will 

be shown, the imaging quality of images generated with our 

proposed method will be assessed and compared with periodic 

sparse array methods. The discussion and conclusion will be 

shown in section IV.  

II. METHODS 

A. Encoding Operator 

Assume the probe array has N elements. In the transmission 
process, we apply Hadamard matrix as the encoding matrix. To 
form one frame of image, there are L transmissions, in each of 
which the same N transmission elements are used. Therefore, 
an L-by-N Hadamard matrix T can be formed. In the receiving 
mode, K receiving channels can be used for each transmission. 
We assume L=N in this paper.  

The encoding process can be described for each l=1:L of 
the L transmission events as 

)t(m)t(T lll RS                          (1) 
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where S(t) is equivalent traditional STA signal matrix, with a 
size N by N,  (Sij(t) is the signal at t received by the j-th element 
when the i-th element transmits). ml(t) is a measurement row 
vector of size K acquired from the selected output channels at 
time t in the l-th transmission event; Tl is a row vector of size N 
to encode the transmission, and Rl (N by K) is a matrix to 
encode the receiving elements. Notice that T and R can vary 
among different transmission events. 

The transmission and receiving encoding process could be 
combined as a Kronecker product via a mathematical identity 
[14]. Therefore, an encoding operator can be defined as 

l

T

ll T RE                                  (2) 

where the superscript T means the transpose of the matrix. 
Thus, this encoding operator can be applied to STA signal. 
Note that to apply this operator properly, the traditional STA 
signal S(t) has to be vectorized into a column vector Svector(t) by 
stacking the columns of S. We have 

LlT

lvectorl :1),t(m)t( SE                    (3) 

In addition, in standard STA the signal received at the i-th 
receiver and transmitted by the j-th transmitter is equivalent to 
the signal received at the j-th receiver and transmitted by the i-
th transmitter, Sij=Sji. Eq. 3 for all the L transmission events 
plus the equations on the transmit-receive symmetry property 
will form a linear equation set. To recover S from ml

T
(t), 

pseudo-inversion with regularization was used in the 
simulations.  

There are N(N-1)/2 symmetry equations, and N
2 

unknowns 
for one set of traditional STA data, therefore in principle 
(N/2+1) receiving channels with N transmissions should be 
sufficient to recover the traditional STA data. In this paper, we 
chose (N/2+1) receiving channels for each transmission 
according to the following triangle pattern. 

B. The triangle pattern to select N/2+1 receiving elements  

Here we first introduce a triangle pattern (patches A, B, and 
C in Fig. 1b), which was used to specify the N/2+1 receiving 
elements in each of the N Hadamard-encoded transmissions to 
obtain one frame of image. The vertical axis represents the 
index of a transmission event and the horizontal axis represents 
the index of all the receiving elements used in a transmission 
event. For example, any point inside a patch, (nx, ny), means the 
nx-th receiver is used in the ny-th transmission. When ny≤N/2, 
the receiving elements include 1: ny and (N/2+ny): N; when ny 
>N/2, the receiving elements include 1: N/2+1. According to 
this method, the total number of output elements selected is 
N/2+1. 
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Fig. 1. Triangle pattern. (a) Original triangle pattern (b) transformed triangle 

pattern 

C. Encoding scheme for N/4+1 receiving channels 

In quarter receiving mode, two adjacent elements are 
combined together as one receiver (e.g. the first bundle 
includes the 1

st
 and 2

nd
 element). This will reduce the receiving 

channels to N/2 bundled elements. There are two sets of 
transmission and receiving encoding protocols to obtain one 
frame of image. In the first set, the (2n-1)-th rows of N-th order 
Hadamard matrix are used to encode the transmissions, where 
n=1:N/2. So N/2 transmission events are used in the first set. 
The quarter-receiving encoding matrix R1/4 for all the N/2 
transmission events is                      

22/4/1 V NIR                                 (4) 

where I is the identity matrix with the size of N/2 and V2 is a 
column vector of (1, 1). Then we chose N/4+1 paired elements 
according to the triangle pattern to reduce the receiving 
channels further by half. Therefore, the final number of 
receiving channel is N/4+1. The second set of transmission and 
receiving encoding protocol is the same as the first set except 
that the (2n)-th rows of N-th order Hadamard matrix are used to 
encode the transmissions, where n = 1:N/2. 

D. Encoding scheme for N/8+1 receiving channels 

This mode is similar to the quarter-receiving mode except 
that four adjacent elements in the receiver array are combined 
together as one receiver. For example, the first bundle includes 
the first four elements. The next bundle includes the fifth 
element to the eighth element, and so on. Four sets of 
transmission and receiving encoding protocols are used to 
obtain one frame of image. This will reduce the receiving 
channel number to N/4. In the first set the (4n-3)-th rows of a 
N-th order Hadamard matrix are used to encode the 
transmissions, where n = 1:N/4. So there are N/4 transmission 
events in the first set. In each transmission of the first set, the 
receiving encoding matrix R1/8 for the first set is 

                       
44/1/8 V NIR                                 (5)      

where I is  the identity matrix with the size of N/4, and V4 is a 
column vector of (1, 1, 1, 1). After selecting N/8+1 from the 
N/4 receivers according to the triangle pattern, we can reduce 
the receiving channels further by half. Therefore, the final 
number of receiving channels is N/8+1. The second set of 
transmission and receiving encoding protocol is the same as the 
first set except that the (4n-1)-th rows of N-th order Hadamard 
matrix are used to encode the transmissions, where n = 1:N/4. 

The third and fourth set of transmission and receiving 
encoding protocol are similar to the first and second sets except 
that V4 is modified to a column vector of (1, 1, -1, -1) as M

4V in 

the receiving-encoding scheme. Then, we have for the third and 
fourth set 

M

N 44/8/1 V IR                               (6) 

In conclusion, the four sets of protocols will form a 
complete imaging protocol, in which, there are N transmissions 
and (N/8+1) receiving channels in each transmission.    



E. Methods in simulations 

1) Simulation parameters 

FIELD II program [15] was used to generate standard STA 
RF data. The probe was simulated as a 128-element, 2-cm 
wide, 5-MHz central frequency phased array with a 0.15-mm 
pitch, 0.01-mm kerf and 10-mm height. The sampling 
frequency was 40 MHz.  

2) Simulation phantoms 

There were two simulated phantoms in our simulations. The 
size of the first medium is 2 cm ×1 cm × 2 cm (Azimuth × 
Elevational × Axial), which contains five point targets placed at 
4 mm apart from 7 mm to 23 mm depth. Another simulated 
phantom has the same size as the first medium, but with nine 4-
mm-diameter hypo-echoic inclusions placed in three rows from 
top to bottom, and the centers are at 1cm, 1.5 cm, and 2 cm 
depth, respectively. For each row, the centers of the three hypo-
echoic lesions are separate by 6 mm apart horizontally. Eight 
point targets are included at two columns, four for each 
column. In each column, the point targets are placed at the 
depth of 0.75 mm, 1.35 mm, 1.75 mm, and 2.35 mm. The log-
enveloped beamformed images were displayed after applying 
Hilbert transform and the logarithm compression. 

F. Imaging quality metrics 

Contrast-noise-ratio (CNR) 

The CNR of inclusions was calculated as:  

2

background

2

lesion

backgroundlesion
CNR










                          (7) 

where 
lesion  and 

background  are the mean value of log-

enveloped region of lesion and background respectively, and 

lesion and 
background are the standard deviation of the log-

enveloped region of the lesion and background, respectively. 

III. RESULTS 

Fig. 2 exhibits a) the log-enveloped image of the standard 
STA and b) the proposed method with symmetry property and 
65 receiving channels selected according to the triangle pattern 
presented in II.B for each transmission. Fig. 2(c) shows the 
image without taking into account of the symmetry property 

but still using the same 65 selected receiving channels as in (b). 
The results illustrate that without using symmetry property, the 
image quality is severely degraded by the strong artifacts. This 
is also confirmed by the line-plots (Fig. 3) through the center of 
the point target at the center of the images. The line plot from 
the model with N/2+1 receivers and the symmetry property 
equations is almost identical to that from the standard STA 
imaging approach.  

Fig. 4 shows the log-enveloped image from the second 
simulated phantom using (a) the standard STA approach, (b) 
our proposed method with 33 receiving channels for each 
transmission, (c) our proposed method with 17 receiving 
channels for each transmission, (d) STA with 32 periodic-
selected receiving elements (elements 4n-3, where n=1:N/4), 
and (e) STA with 16 periodic-selected receiving elements 
(elements 8n-7, where n=1:N/8). As seen in Table 1, the CNR 
values of the lesions in the images from the proposed method 
are better than those from the model with periodically selected 
receiver elements. 

 
Fig. 2.  Log-enveloped beamformed simulated images from (a) standard STA, 
(b) our proposed method with symmetry property and 65 receiving channels 
selected according to the triangle pattern for each transmission and (c) the 

method without symmetry property but with the same 65 selected receiving 
channels. 

 
Fig. 3. Line-plot comparisons through the center of the point target at the center 

of the images between standard STA, our proposed method with symmetry 
property and the method without symmetry property. 

 
Fig. 4. Log-enveloped beamformed simulated images from (a) standard STA, (b) proposed method with 33 receiving channels, (c) proposed method with 17 
receiving channels, (d) STA with 32 periodic-selected receiving elements (elements 4n-3, where n=1:N/4), and (e) STA with 16 periodic-selected receiving 

elements (elements 8n-7, where n=1:N/8). The image dynamic range is 65 dB.



TABLE I. CNR measurements of nine hypo-echoic inclusions in the images of  (a) standard STA, (b) our proposed method with 33 receiving channels, (c) our 
proposed  method with 17 receiving channels, (d) STA with 32 periodic-selected receiving elements, and (e) STA with 16 periodic-selected receiving elements. 

Method 1-cm hypo lesions 1.5-cm hypo lesions 2-cm hypo lesions 

Left Middle Right Left Middle Right Left Middle Right 

Standard STA -4.0714 -4.2016 -3.7896 -4.1168 -4.7093 -3.8033 -4.1198 -4.3769 -3.9540 

Proposed (33) -3.0883 -2.9962 -2.6495 -3.7994 -4.1432 -3.3892 -3.9020 -3.9381 -3.7152 

Proposed (17) -2.7089 -3.6930 -2.6684 -4.0467 -4.4955 -3.7181 -4.0432 -3.9763 -3.6865 

Periodic (32) -2.2202 -2.8374 -1.8499 -2.3006 -3.1895 -1.9111 -2.4222 -2.9930 -2.1848 

Periodic (16) -1.7182 -2.5124 -1.4694 -1.8482 -2.5931 -1.5708 -2.3323 -2.7434 -2.0008 

 

IV. DISCUSSION AND CONCLUSION 

In this study, the triangle pattern was used to reduce the 
receiving channels by applying the transmit-receive symmetry 
equations. Other methods to choose the receiving channels 
might also give similar performance. We used the triangle 
pattern because it can provide a simple and fast way to recover 
the traditional STA data.  

There are some artifacts in the hypo-echoic lesions when 
they are placed near the probe. This is because when the two or 
four adjacent elements are combined, the array pitch will be 
increased to more than half a wavelength, and the grating-lobe 
artifacts will affect the image qualities, especially at large 
transmit/receive angles.  

In conclusion, a new Hadamard-encoded STA approach 
with reduced receiving channels method is presented in this 
paper. The transmit-receive symmetry property can be 
effectively utilized to reduce the number of receiving channels 
by half without compromising the image qualities. Furthermore, 
schemes to encode the receiving elements can result in further 
reduction in the number of receiving channels and compensate 
partially for the degradation in image qualities in periodic 
sparse arrays. Therefore, the cost of an imaging system can be 
decreased due to the fewer electronics associated with the 
reduced number of active receiving channels. Although the 
initial simulations were implemented in 2D STA, this method 
can be extended to 3D STA imaging system.  
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