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Abstract—A Monte Carlo simulation study on ultrasound
backscattering by cell aggregates with poly-disperse cells is dis-
cussed. The nuclei in a cell aggregate were assumed as scatterers
and the Anderson model was used to obtain backscattering
amplitude for each nucleus. The resultant backscatter echo from
many particles was determined by using linear superposition of
backscatter signals emitted by the nuclei. The random sequential
adsorption (RSA) method was employed to generate spatial
organizations of nuclei. The frequency dependent backscattering
coefficient (BSC) and signal envelope statistics were obtained
from tissue samples with different size distributions. For each
poly-disperse sample the nuclear populations followed a Gaussian
distribution with the nuclear packing fraction fixed at 50.36%.
It was found that integrated backscattering coefficient (IBSC)
computed between 10-30 MHz increased about 7 dB for the
highest poly-disperse sample considered compared to that of a
mono-disperse sample. A Gaussian input pulse was employed to
investigate signal envelope statistics. It was found that envelope
histograms followed the Rayleigh distribution. The Rayleigh fit
parameter (σ) increased as dispersity increased. For example, for
the highest poly-disperse sample, σ increased about 105% and
157% compared to mono-disperse sample for input pulses with 5
and 25 MHz as the center frequencies and 80% bandwidths. The
present work shows that poly-dispersity contributes to ultrasound
backscatter but the shapes of histograms did not vary with the
size distribution of scatterers.
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I. INTRODUCTION

Quantitative ultrasound (QUS) has been extensively used to
diagnose and monitor cancer. In this method radio frequency
backscatter signals have been analyzed in the spectral domain
to quantify scattering properties (e.g. number density of scat-
terers, average scattering strength, mean scatterer size etc.)
of a tissue sample. Such a method becomes useful to localize
lesions and to differentiate benign and malignant cancer tissues
[1].

Our group has also employed this method to detect cell
death in cell samples and tissues exposed to cancer therapies
such as chemotherapy, radiation and photodynamic therapy
[2, 3]. It was observed that the backscatter signal intensity
increased significantly for apoptotic cells compared to that of
viable cells. An approximately 16 fold increase was measured
due to apoptosis. Other forms of cell death namely oncosis and
mitotic arrest/catastrophe have also been detected and charac-
terized using QUS [3]. These experimental studies revealed

that QUS has the potential to provide a noninvasive method
to monitor cell death. The differentiation and quantification of
various forms cell death are important to assess efficacy of
cancer treatments.

Cancer treatments aim to kill abnormal cells and in the
process induce various changes at cellular and nuclear mor-
phology. For example, cellular/nuclear spatial organization and
size distribution seem to be affected most and that might result
in a detectable change in ultrasound backscatter. In this work
we examine the role of nuclear size distributions on ultrasound
backscattering.

We present a theoretical model, which can account for the
size heterogeneity of scatterers and thus provides a realistic
simulation tool to study backscattering by cell aggregates with
different cellular size distributions. A Monte Carlo algorithm
was used to simulate tissue realizations with mono-disperse
and poly-disperse nuclei. The backscatter signals generated
from those simulations were used to investigate the effects of
scatter size distributions on ultrasound backscattering.

II. MATERIALS AND METHODS

A. Physical model

The cells in an aggregate are tightly packed and therefore
nuclei can be hypothesized to act as scatterers since their
acoustic impedance is different with respect to that of the am-
bient medium (cytoplasm). Further, the nuclei can be assumed
as weak scatterers of incident ultrasound waves because their
acoustic properties do not vary much with respect to that of the
surrounding medium. Thus, the effects of multiple scattering
can be neglected and the resultant backscatter echo signal
can be obtained by using linear superposition of scattered
signals by the nuclei. The analytical expression of backscat-
tering amplitude for poly-disperse scatterers embedded in a
homogeneous loss-less medium for the entire frequency range
can be presented as [3]:

χb(−2k) = m⟨ 1
N

|
N∑

n=1

exp(i2k · rn)ϕbn(k, an)|2⟩, (1)

where, m and ϕbn are the number density of scatterers and
backscattering amplitude in the Anderson model for the n-th
particle with radius an and position vector rn respectively.
The symbol ⟨⟩ represents the ensemble average. This is a
general expression of backscattering coefficient and is valid for
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Fig. 1. Scattering diagram (top view).

a poly-disperse medium as well. The corresponding scattering
diagram is shown in Fig. 1. For a mono-disperse medium
the backscattering amplitude can be factored out from the
summation and hence reduces to:

χb(−2k) = m⟨ 1
N

|
N∑

n=1

exp(i2k · rn)|2⟩ |ϕb(k, a)|2 . (2)

An analogous expression has been used extensively to describe
ultrasound backscattering by red blood cells [5]. The second
term on the right hand side of (2) is referred in the acoustic lit-
erature as structure factor of the medium. In the low frequency
range for non-overlapping cells it can be approximated by the
Percus-Yevick packing factor and in two dimensions (2) can
be written as:

χb(−2k) = mW |ϕb(k, a)|2 , (3)

where, W = (1−H)3/(1+H), is the Percus-Yevick packing
factor in two dimensions and H is the packing fraction of the
scatterers. Equations (1) and (2) have been computed in this
work to simulate BSCs from poly-disperse and mono-disperse
samples. Equation (3) has also been computed to compare its
prediction with that of (1) and (2).

The backscatter signal at a large distance r from a collection
of particles due to the scattering of a pulse can be expressed
as:

ps(r) ≈ 1√
2π

∫
dk eikr

r F(k)[
∑N

n=1 exp(−
y2
n

2σ2
y
)

ϕbn(k, an)e
i2kxn ], (4)

where, it is assumed that the input pulse is a Gaussian pulse
propagating along the x-axis and is given by:

pin(x, y) ≈
(

1

πσ2
x

) 1
4

exp(− y2

2σ2
y

) exp(− x2

2σ2
x

)eik0x, (5)

The notations σy and σx express the beam width and the pulse
width respectively. The center frequency of the pulse is defined
by k0. The Fourier transform (for the x component only) of

the above function is:

p̃in(k, y) =

(
1

πσ2
k

) 1
4

exp(− y2

2σ2
y

) exp(− (k − k0)
2

2σ2
k

),

= exp(− y2

2σ2
y

)F(k), (6)

and σx = 1/σk. It should be noted in (4) that the individual
backscattering amplitude for each particle is weighted by the
strength of the pressure field at that location in order to
obtain the resultant backscatter signal from many particles.
Equation (4) has been computed in this study to investigate
signal envelop statistics from different samples with various
size distributions of nuclei.

B. Simulation method

The size of the region of interest (ROI) was taken as 1000 x
1000 µm2 for BSC computation and this region was assumed
to be completely filled by the acute myeloid leukemia (AML)
cells. Thus nuclei could be assumed to be the scatterers. The
packing fraction was fixed to H = 50.36% for a sample
with uniform nuclear size. This value is close to the nuclear
to cell volume ratio (≈ 0.55) of that cell line and also
close to the maximum area packing fraction (52-55% [6]) in
two dimensions by discs with equal radii. For poly-disperse
samples nuclear populations, when plotted as a function of
their radius, followed Gaussian distributions but the total area
occupied by the nuclei always remained constant to 50.36%.
The density and speed of sound within the nucleus were
chosen as ρe = 1180 kg/m3 and ce = 1523 m/s respectively.
The numerical values of the same quantities of the surrounding
medium were taken as ρ0 = 1000 kg/m3 and c0 = 1483 m/s
respectively [7].

A Monte Carlo algorithm known as random sequential
adsorption (RSA) method was used to assign the coordinates
of the particles. In this algorithm a coordinate of a particle
was proposed and was accepted if it did not overlap with
the existing particles under periodic boundary conditions.
Otherwise this location was canceled and a new position
was assigned. Thus the scatterers might touch but would not
overlap. For a poly-disperse sample we implemented the same
algorithm to generate tissue realizations but we placed the
largest nuclei at first and then gradually nuclei with lower
sizes were positioned within the region of interest [8].

To study signal envelope statistics we approximated the
incident ultrasound beam emitted by a circular transducer as a
Gaussian beam. Scattering of two separate input pulses with 5
and 25 MHz as the center frequencies were examined to study
bandwidth dependent behaviors. A 80% bandwidth was fixed
for each pulse. Thus, the pulse widths became σx = 0.137
mm and 0.027 mm respectively. Corresponding values of beam
width were taken as σy = 0.89 mm and 0.45 mm respectively
for these pulses. In this case a 4000 x 4000 µm2 ROI was
considered to generate sufficiently long A-lines.
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Fig. 2. Simulated tissue realizations with mono-disperse [(a)] and poly-disperse [(b) and (c)] nuclei. (d) Plot of number of nuclei as a function of radius.
The mean scatterer size and standard deviation are given in the legend for each sample. (e) Variation of the pair correlation function with distance for each
sample. (f) Frequency dependent backscattering coefficient for each sample along with Percus-Yevick prediction (PYPT).
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Fig. 3. (a)-(c) Simulated [by using (4)] backscatter A-lines from those samples (Mono-disperse, Poly-disperse1 and Poly-disperse2) respectively for the
scattering of a 5 MHz Gaussian input pulse. (d)-(f) Corresponding histograms for 100 A-lines and the Rayleigh fitted curves.
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III. RESULTS

A two dimensional packing of nuclei with uniform size
mimicking a cell aggregate realization is shown in Fig. 2(a).
Figs. 2(b) and (c) represent configurations of aggregates with
poly-disperse nuclei. For clarity smaller region of interest
(250 x 250 µm2) was shown for each sample. Corresponding
nuclear populations are presented as a function of their size
in Fig. 2(d). For mono-disperse sample it follows a uniform
distribution (right axis) whereas for poly-disperse samples
they followed Gaussian distributions. The variation of pair
correlation function for each sample is plotted in Fig. 2(e)
to display its structural properties. This figure shows that for
the first sample g(r) is zero for r < 9 µm and this is due
to fact that rigid nuclei cannot overlap. However, for other
cases this restriction is no longer valid because of the presence
of smaller particles in the samples. Moreover, the samples
have similar structural properties at a distance > 25 µm.
The frequency dependent backscattering coefficient curves are
displayed in Fig. 2(f). It is evident that BSC increased up
to 50 MHz as poly-dispersity increased. For example, IBSC
for the third sample computed between 10-30 MHz is about
7 dB more than that of the first sample as given in Table I.
However, associated SS did not vary significantly (see Table
I). In the higher frequency range (> 50 MHz) instead of
oscillatory behavior (which is evident in the mono-disperse
case) smother variations of BSC curves are observed for
poly-disperse samples. For the later samples the maxima and
minima positions are different for different nuclear sizes and
thus smother curves were obtained.

TABLE I
VARIATIONS OF IBSC, SS AND RAYLEIGH FIT PARAMETER (σ) WITH

POLY-DISPERSITY.

Sample IBSC (dB) SS σ (a.u.) σ (a.u.)
for 5 MHz for 25 MHz

Mono-disperse - 4.17 2.59e-9 4.98e-5
Poly-disperse1 3.29 4.26 3.59e-6 8.41e-5
Poly-disperse2 6.99 4.47 5.31e-6 12.81e-5

Fig. 3(a) illustrates a backscatter A-line from the first
sample for the scattering of 5 MHz pulse. The envelope of
that A-line is also outlined in the same figure. Figs. (b) and (c)
display A-lines form other samples. Corresponding histograms
are plotted in the second row. It is clear from the figures and
from the table that as the dispersity increased signal strength
also increased. For instance, for the highest poly-disperse
sample σ increased about 105% compared to that of mono-
disperse sample for 5 MHz pulse (see Table I). The backscatter
signals for 25 MHz pulse are not been shown but numerical
values are presented in Table I. In this case similar signal
characteristics can be observed. Therefore, size heterogeneity
of scatterers did not affect shapes of envelope histograms.

IV. CONCLUSION

A Monte Carlo study on ultrasound backscattering by
AML cells in aggregates was discussed here. In this study,
the backscatter signals were obtained from aggregates with
mono-disperse and poly-disperse nuclei. The first prototype
mimicked spatial distributions of nuclei of viable cells in
aggregates. The other prototypes imitated nuclear organiza-
tions of apoptotic cells in pellets, which would have a greater
distributions of nuclear size. Thus it was possible to the
investigate role of size distributions of particles on ultrasound
backscattering. A simulation algorithm referred as random
sequential adsorption technique was implemented to generate
some configurations of those samples. Both frequency depen-
dent backscattering coefficient and signal envelope statistics
were examined.

The theoretical model presented here can accommodate
heterogeneous sizes of scatterers and thus provides a realistic
frame work to simulate ultrasound backscattering by samples
with poly-disperse nuclei. It was found that IBSC increased
about 7 dB for the highest poly-disperse sample compared to
that of mono-disperse sample and associated spectral slope
also increased but marginally. Corresponding Rayleigh fit
parameter increased nearly 105% and 157% for the scattering
of 5 and 25 MHz Gaussian input pulses respectively. Thus
this model is capable to generate physically meaningful results
and also consistent with experimental findings [3]. In future it
would be interesting to extend this study for three dimensional
distributions of cells.
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