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A two dimensional simulation study was performed to investigate the photoacoustic signal proper-

ties of non-aggregated and aggregated erythrocytes. Spatial distributions of non-aggregated blood

samples were generated by employing a Monte Carlo method and aggregated blood samples were

simulated using a hexagonal packing scheme. For the non-aggregating case photoacoustic signals

demonstrated a monotonic rise with hematocrit. For the aggregating case it was found that spectral

(<20 MHz) intensity increased (11 dB at 15.6 MHz) when the aggregate size increased. This study

strongly suggests that the assessment of erythrocyte aggregation level in human blood might be

possible by using a photoacoustic spectroscopic method. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Photoacoustic (PA) imaging is an active area of biomed-

ical imaging research, that has attracted a lot of attention in

the past few years.1 In PA imaging, tissues are generally irra-

diated by a short-pulsed laser. Tissues absorb energy from

the incident radiation, become heated, undergo thermoelastic

expansions and subsequently emit pressure waves. Essen-

tially, the optical and thermoelastic properties of a tissue are

probed by detecting pressure waves using ultrasonic technol-

ogies after illumination by a laser radiation. There are two

advantages associated with this modality. Images can be

generated with better contrast than conventional ultrasound

images and also PA imaging can image deeper tissues com-

pared to that of conventional optical imaging modalities

(e.g., confocal microscopy, two-photon microscopy etc.)

with ultrasonic resolution. Strong contrast arises due to large

differences of the light absorption properties of different tis-

sues and detection of pressure waves in the receiving end

allows to image deeper tissue regions. In recent years, ex-

quisite images of the human and small animal vasculature

have been produced by exploiting the large optical absorp-

tion of oxygenated and de-oxygenated blood at the relevant

optical wavelengths.1

Moreover, estimates of tissue oxygenation can be made

by the appropriate choice of the laser wavelength. The PA

flowmetry methods have also been used to detect circulating

melanoma cells in human blood and lymph nodes.2 In

another study, the PA technique along with the conventional

ultrasound imaging have been implemented to detect and

stage deep vein thrombosis.3 In addition to that, PA signals

from individual red blood cells (RBCs) has been detected

using very high ultrasound frequencies.4 However, the

potential of PA imaging has never been employed to study

the aggregation of red blood cells in human blood. While

RBC aggregation in human blood is a normal phenomenon,

hyper-aggregation is a pathological state. It is associated

with a wide range of pathological conditions, such as, acute

myocardial infarction, cerebral ischemia, diabetes, and sickle

cell disease.5–7 It occurs due to the presence of large plasma

proteins or macromolecules (e.g., fibrinogen) in blood in

abnormal levels8 and can lead to various cardiovascular and

circulatory disorders.9

RBC aggregation is indirectly evaluated for clinical pur-

poses through erythrocyte sedimentation rate (ESR) but this

technique is poorly correlated with the RBC aggregation.10

More accurate estimation of RBC aggregation can be made

using light scattering techniques [e.g., laser-assisted optical

rotation cell analyzer (LORCA)].10 However, these are

in vitro techniques and cannot be used for in vivo assessment

of RBC aggregation. To achieve this various imaging and

characterizing methods have been explored. For example,

spectral domain Doppler optical coherence tomography tech-

nique has been used to measure RBC aggregation.11 It was

shown that variance of Doppler frequency spectrum was ca-

pable to differentiate non-aggregating and aggregating RBCs

at hematocrits between 30% and 55% flowing at a shear rate

of 40–60 s–1. In another investigation, X-ray phase contrast

imaging modality has been used to examine the effects of

RBC aggregation on speckles.12 The size and contrast of

speckles were found to be varied with the degree of RBC

aggregation. So far a great deal of effort has also been put

into developing ultrasound backscattering techniques as a

noninvasive tool to monitor the level of RBC aggrega-

tion.13,14 The aggregation mechanism essentially alters spa-

tial organization of the cells which in turn produces large

changes in ultrasound backscatter. Thus, it is intuitively

expected that it might be possible to evaluate aggregation

level by measuring pressure waves around the diagnostic

ultrasound frequency range generated due to the absorption

of light.

The aim of the paper is to illustrate the potential of using

a PA method to characterize the level of aggregation of

erythrocytes in human blood. The PA signals from a collec-

tion of red blood cells approximated as homogeneous

spheres distributed in two dimensional space under non-

aggregating and aggregating conditions were simulated by
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extending a theoretical model involving a frequency domain

approach previously developed by Diebold et al.15 that cal-

culates the PA field generated by a spherical source exposed

to a delta function laser (and thus heating) pulse. Spatial

distributions of non-overlapping RBCs mimicking non-

aggregated blood samples were generated by employing a

Monte Carlo method known as the random sequential

adsorption (RSA) technique. RBCs were packed following a

hexagonal packing scheme to form a compact aggregate.

Such an aggregate was repeated and randomly placed within

the region of interest (abbreviated as ROI hereafter and

refers to the region illuminated by the optical radiation) to

simulate non-overlapping, isotropic, and identical RBC clus-

ters representing an aggregated blood sample. This is a very

simple and fast method to generate clusters. This approach

has been successfully used in modeling ultrasound backscat-

ter.16 The mean radius of gyration of clusters for each aggre-

gation level was computed to indicate effective cluster size.

The PA signal properties such as signal envelope statistics

and frequency dependent power spectra were investigated

for these two types of blood samples. Our results show that a

PA method can be implemented in practice to assess the

level of red blood cell aggregation non-invasively.

The paper is organized as follows: In Sec. II we discuss

the theoretical model and in Sec. III the computer simulation

methods are described. The simulation results are presented

in Sec. IV. Finally, Sec. V contains discussion of our results

and conclusions are summarized in Sec. VI.

II. THEORETICAL MODEL

The time dependent wave equation for the pressure gener-

ated by the absorption of optical radiation under the condition

of thermal confinement (i.e., heat conduction remains zero

before the pressure pulse is launched) can be written as15

r2p� 1

v2
s

@2p

@t2
¼ � b

CP

@H

@t
; (1)

where b is the isobaric thermal expansion coefficient, CP is

the heat capacity per unit mass, and vs is the speed of sound

in the illuminated region. Here, H is the thermal energy de-

posited by the optical radiation per unit time and volume.

If the optical radiation with intensity I0 propagates along

the x axis and varies sinusoidally with time, the heating func-

tion can be expressed as, Hðx; tÞ ¼ lI0e�ixt. Here, l is the

optical absorption coefficient of the illuminated medium and

x is the modulation frequency of the optical beam. For such

a heating function the steady state pressure field will also

vary sinusoidally and thus Eq. (1) reduces to the following

time independent form,15

r2pþ k2p ¼
ixlbI0

CP
inside the absorber;

0 outside the absorber;

8<
: (2)

where k is the wave number of the pressure wave. This is an

inhomogeneous partial differential equation. It is possible to

obtain analytical solutions of Eq. (2) for some simple

geometries (e.g., layer, cylinder, sphere etc.) using the

appropriate boundary conditions, namely continuity of pres-

sure and the normal component of particle velocity. The PA

pressure for uniform illumination of a spherical absorber at a

distance r in the surrounding medium can be found as15

psingle
f ðq̂Þ ¼ ilbI0vsa

CPðr=aÞ

� ½sin q̂� q̂ cos q̂�eikf ðr�aÞ

q̂2½ð1� q̂Þðsin q̂=q̂Þ � cos q̂þ iq̂v̂ sin q̂� ; (3)

where the dimensionless frequency q̂ is defined as

q̂ ¼ xa=vs and a is the radius of the absorbing sphere. Simi-

larly, the dimensionless quantities q̂ ¼ qs=qf and v̂ ¼ vs=vf

represent the ratios of density and speed of sound, respec-

tively. The subscripts s and f are used to indicate properties

of the absorber and the surrounding fluid medium, respec-

tively. Here, kf is the wave number in the fluid medium for

the pressure wave with frequency x and is given by

kf ¼ x=vf . Further, the superscript single in Eq. (3) signifies

that only one PA source is considered. The expression of

time dependent PA pressure can readily be derived by taking

the Fourier transformation of Eq. (3) and for a delta function

heating pulse it becomes15

psingle
f ðŝÞ ¼ ilbFv2

s

2pCPðr=aÞ

ð1
�1

dq̂

� ½sin q̂� q̂ cos q̂�
q̂2½ð1� q̂Þðsin q̂=q̂Þ � cos q̂þ iq̂v̂ sin q̂� e

�iq̂ŝ;

(4)

where the pressure field has been presented as a function of

dimensionless retarded time ŝ from the edge of the sphere

and it is defined as ŝ ¼ ðvs=aÞ½t� ðr � aÞ=vf �. Here, F indi-

cates the optical radiation fluence.

In many situations related to light scattering and ultra-

sound scattering by random media, scattered fields have been

expressed as a superposition of spherical waves generated by

the scatterers. This is essentially based on the single particle

approach and works well for a sparse medium. This approach

has been used extensively in many fields to explain experi-

mental results.17–19 The single particle approach has been

employed here. It was also assumed that the absorbers were

illuminated by a light with constant intensity irrespective of

their spatial positions. That means all double and multiple

scatterings of light beam were assumed to be negligible.

Moreover, acoustic waves generated by a light absorbing par-

ticle did not interact with other particles in the medium. With

these assumptions, the PA pressure field generated by a col-

lection of absorbing spheres can be written as a linear superpo-

sition of spherical waves emitted by the individual sources as

pensemble
f ðq̂Þ ¼ ilbI0vsa

2

CP

� ½sin q̂� q̂ cos q̂�
q̂2½ð1� q̂Þðsin q̂=q̂Þ � cos q̂þ iq̂v̂ sin q̂�

�
XN

n¼1

eikf ðjr�rnj�aÞ

jr� rnj
: (5)
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The summation term in the above equation accounts for the

interference of pressure waves generated by many (as

denoted by the superscript ensemble) spheres distributed in

space. Here, rn represents the position vector of the nth parti-

cle and the ROI contains N PA sources. If the observation dis-

tance r is large compared to the size of the ROI, the terms,

kf jr� rnj in the numerator and jr� rnj in the denominator of

Eq. (5) can be approximated as, kf jr� rnj ! kf r � kf � rn

and jr� rnj ! r, respectively.19 Here, kf defines the direction

of observation. Therefore, Eq. (5) reduces to

pensemble
f ðq̂Þ � ilbI0vsa

CPðr=aÞ

� ½sin q̂� q̂ cos q̂�eikf ðr�aÞ

q̂2½ð1� q̂Þðsin q̂=q̂Þ � cos q̂þ iq̂v̂ sin q̂�

�
XN

n¼1

e�ikf �rn : (6)

The time dependent pressure field can be derived as

pensemble
f ðŝÞ � ilbFv2

s

2pCPðr=aÞ

ð1
�1

dq̂

� ½sin q̂� q̂ cos q̂�
q̂2½ð1� q̂Þðsin q̂=q̂Þ � cos q̂þ iq̂v̂ sin q̂�

� e�iq̂ŝ
XN

n¼1

e�ikf �rn : (7)

In this work the above integration has been evaluated

numerically to compute pressure fields at a large distance

from the center of the ROI at various non-aggregating and

aggregating conditions of red blood cells.

III. SIMULATION METHODS

A. Simulation parameters

A 2D simulation study was carried out to examine the

PA signal properties of non-aggregated and aggregated

blood samples. 2D simulations are computationally less in-

tensive than that of 3D and are capable in generating physi-

cally meaningful results.20,21 It is also easier to visualize and

distinguish different cluster geometries in 2D. The size of

the region of interest was chosen as 200 � 200 lm2 and

could be thought as a 2D slice of a blood sample. The RBCs

in a blood sample could be assumed to be the dominant

absorbers of the incident optical radiation as well as sources

of PA emissions. In many experiments the wavelength of the

laser beam has been tuned to the most optimal optical

absorption of erythrocytes.3 Also, RBCs are much more

numerous than other blood cells (�98% of blood cells are

RBCs). Thus, the contributions from white blood cells and

platelets in PA signals from bloods were neglected in this

study. In the present study we also approximated RBCs as

homogeneous spheres with a volume 87 lm3 and radius

a¼ 2.75 lm for each cell. The density and speed of sound

within RBCs were taken as qs ¼ 1092 kg/m3 and vs¼ 1639

m/s, respectively.22 The numerical values of the same quan-

tities of the surrounding medium (blood plasma) were cho-

sen as qf ¼ 1005 kg/m3 and vf¼ 1498 m/s.22 The cells were

hypothesized to be in the similar bio-physical and bio-chem-

ical conditions, which in turn allowed to consider the numer-

ical values of the physical parameters (b, CP, and l) to be

same for all cells. It was further approximated that the cells

were illuminated by a light with constant intensity irrespec-

tive of their spatial locations. Therefore, these parameters (b,

CP, l, and F) were treated as constants and were taken as

equal to unity in this study. Table I summarizes the numeri-

cal values that were used to compute Eq. (7). The RBCs

were positioned in the region of interest for non-aggregating

and aggregating conditions to simulate 2D tissue realiza-

tions. For each case 250 frames representing possible tissue

configurations were simulated to generate 250 PA radio fre-

quency (RF) lines by computing Eq. (7). The integration in

Eq. (7) at each time point was evaluated numerically by

employing the trapezoidal rule and the computed PA pres-

sure was a complex quantity. The PA RF line was obtained

from the real parts of PA pressure time series data and signal

envelope was determined from the corresponding magni-

tudes. The computer codes written in C were executed in a

remote computer cluster. Post processing of data were per-

formed in MATLAB R2009b.

B. Simulation of non-aggregated red blood cells

A blood tissue realization of non-aggregated RBCs was

generated by using a Monte Carlo method known as the

RSA technique.23 In this method the coordinates of a RBC

were chosen randomly with the restriction that it would not

overlap with the existing particles under the periodic bound-

ary conditions, although they might touch. In other words

coordinates of a RBC were proposed randomly and accepted

if it satisfied the non-overlapping conditions (i.e., cells must

be separated by a distance equal to or more than their diame-

ters) with other cells. If there was a overlap, the trial move

was canceled and a new move was initiated. In this way the

coordinates of a RBC were generated. This step was repeated

until coordinates of all red blood cells at a particular hemato-

crit were assigned. The term hematocrit is defined as the

fractional volume occupied by the cells. However, in this 2D

simulation study it was obtained from the ratio of area occu-

pied by the cells to the total area of the ROI. Once the spatial

positioning of RBCs was completed, Eq. (7) was then com-

puted to obtain the PA RF line and signal envelope for that

spatial organization of cells. The average signal amplitude

was evaluated subsequently from that envelope data set.

TABLE I. Physical constants and parameters used in simulations.

ROI 200 � 200 lm2

a 2.75 lm

qs 1092 kg/m3

vs 1639 m/s

qf 1005 kg/m3

vf 1498 m/s

b 1 K–1

CP 1 J kg–1K–1

l 1 m–1

F 1 Jm–2
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This procedure was repeated for 250 RF lines generated

from 250 different tissue realizations. Finally, the mean

[indicated by <PA signal amplitude>, in the Figs. 2(f) and

3(f)] and standard deviation were determined from the 250

numerical values for each hematocrit. The signal envelope

histogram was also obtained from the 250 RF lines for each

hematocrit and fitted with a Rayleigh distribution function

[see Eq. (A1) of the Appendix]. The best fitted Rayleigh dis-

tribution curve was obtained by optimizing the theoretical

model and the simulated histogram. Essentially, at each he-

matocrit the r value was estimated at first from the first order

moment of envelope data set as given by Eq. (A2). This esti-

mated value was then provided to a MATLAB function known

as the ‘fminsearch’ as a guess for the fitting parameter and

that function carried out the optimization (it uses the

Nelder–Mead simplex algorithm24) to generate the best fitted

curve. In this work PA signal characteristics of blood sam-

ples with non-aggregated RBCs were studied at various hem-

atocrits, H¼ 0.02–0.50. The corresponding numbers of

particles were counted to be 34–842 as displayed in Table II.

C. Simulation of aggregated red blood cells

A blood tissue configuration of aggregated RBCs can be

generated in various ways. For example, Savery et al.20

empirically modeled the cellular pair interaction energy as a

combination of steric and attractive potentials and then

applied the Monte Carlo technique to evolve the system over

a large number of iterations to generate two dimensional dis-

tributions of aggregated RBCs. In another Monte Carlo

study,25 cells were allowed to interact via a Morse type of

potential to form three dimensional distributions of aggre-

gated RBCs. However, both the methods are computation-

ally intensive and also do not always generate compact RBC

clusters; only random loose pack (RLP) configurations only

be achieved. In two dimensions RLP can provide 54%–55%

packing density of cells whereas it is about 60% in three

dimensions.23 Thus, they are not capable to provide compact

clusters. However, to generate tightly packed RBC clusters

one can rely on regular packing schemes. For instance, in

two dimensions a packing density of circles of nearly 90%

can be attained through a hexagonal packing scheme.26 In

this study this packing scheme was followed to arrange

circles representing RBCs in order to form an aggregate.

This cluster was repeated and placed randomly within the

ROI to generate an aggregated blood sample. Note that this

is a very fast method because cells are placed at fixed loca-

tions in an aggregate and also capable to form compact

clusters.

A flow chart diagram illustrating the steps used to gener-

ate the spatial distribution of the RBCs is shown in Fig. 1. At

first the total number of cells were obtained by fixing the he-

matocrit and the size of the ROI. In this study, the PA signal

properties of blood samples at 40% hematocrit and at differ-

ent clustering or aggregating conditions were examined. A

hematocrit level of 40% was chosen because it is close to the

normal level of hematocrit ð�45%Þ in normal human

blood.19 The next step was to find the spatial positions of

randomly distributed, well separated, isotropic clusters of

identical size within the ROI under periodic boundary condi-

tions using the same RSA algorithm. The number of clusters

also fixed the number of cells, that could be attached per

cluster. The number of cells per cluster was determined by

dividing the total number of cells by the number of clusters

and truncating that numerical value to the nearest lower inte-

ger value. That number of cells were positioned using the

hexagonal packing arrangement for each cluster.

To do this initially a large number of circles represent-

ing RBCs were stacked in a rectangular area following the

hexagonal packing scheme.26 After that coordinates of the

center of a circle located at the central region of that rectan-

gular area was chosen. Coordinates of the centers of other

circles were recorded according to their distances with

respect to that reference point to form a lookup table. The

next step was to take the coordinates of the required number

of circles attached to a cluster from this lookup table and

place them with respect to the center of a cluster. Note that

the lookup table provided the coordinates of the circles with

respect to the cluster center. However, the coordinates of

those circles with respect to the origin of the ROI are

required for the computation of Eq. (7) and that could easily

be obtained by summing coordinates (available from the

lookup table) of those circles and that of the cluster center.

Similarly the coordinates of the circles associated with other

clusters were taken from the lookup table and they were

transformed into the coordinate system of the ROI. The

circles, which did not belong to any cluster were positioned

within the ROI under non-overlapping conditions with other

circles. In this way spatial distributions of non-overlapping,

isotropic and identical clusters containing non-overlapping

cells were generated. Furthermore, for each aggregating con-

dition the mean radius of gyration of clusters was computed

to quantify the mean cluster size. The radius of gyration of a

cluster was determined by using the square of the distances

of the cells from the center of the cluster such as

Rg ¼
3

5
a2 þ 1

nc

Xnc

j¼1

r2
j

 !1=2

; (8)

where nc is the number of cells attached to a cluster and rj is

the distance of the center of the jth cell from the cluster cen-

ter. The numerical values of Rg were obtained for all clusters

associated with a tissue realization and the average value

was computed subsequently. Further, the non-aggregated

TABLE II. RBC aggregation parameters associated with various simulated

tissue samples.

Non-aggregated blood

H 0.02–0.50

N 34–842

Rg 2.13 lm

Aggregated blood

H 0.40

N 674

Cl 54.82–11.78

NCl 11.83–57.10

Nnag 24.41–1.77

Rg 7.57–15.39 lm
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RBCs were not considered in order to estimate the mean ra-

dius of gyration of clusters.

Table II displays the numerical values of different quan-

tities characterizing aggregated blood samples examined in

this study. For instance, the mean number of clusters varied

between� 54.82 and 11.78 from the lowest to the highest

clustering condition. The average number of particles associ-

ated with a cluster lied in the range from 11.83 to 57.10 and

for all samples very few numbers (<4%) of cells were not

part of aggregates. The lowest value of mean radius of gyra-

tion of clusters was estimated to be 7.57 lm and that of the

highest aggregation was 15.39 lm.

IV. SIMULATION RESULTS

Figure 2(a) demonstrates two dimensional spatial orga-

nization of red blood cells mimicking a tissue realization

with non-aggregated RBCs at H¼ 0.40. Each circle repre-

sents a RBC. Figure 2(b) shows a representative PA RF line

computed by using Eq. (7) at the same hematocrit level. The

corresponding envelope histogram, generated over 250 RF

lines, is presented in Fig. 2(c). It also shows that the Ray-

leigh distribution [see Eq. (A1) of the Appendix] provides

good fit to the envelope histogram. Variations of PA mean

power spectra at several hematocrits are shown in Fig. 2(d)

over a wide range of frequencies (MHz to GHz). For each

hematocrit the mean power spectrum was obtained from 250

RF lines. The spectral intensity increased as the number of

cells within the region of interest (hematocrit) increased.

The same plots of Fig. 2(d) are shown on a log–log scale in

Fig. 2(e). Figure 2(f) illustrates how the mean (61 standard

deviation) of PA signal amplitudes varies with hematocrit. A

monotonic increase of PA signal is observed with increased

concentration of red blood cells. Karpiouk et al.3 also experi-

mentally obtained a similar variation of measured PA signals

with hematocrit.

A representative diagram of aggregated red blood cells

at 40% hematocrit forming non-overlapping, isotropic, and

identical clusters with mean radius of gyration, Rg¼ 12.24

lm is shown in Fig. 3(a). In this figure small circles repre-

sent individual RBCs and big circles outline the cluster

boundaries. The effects of periodic boundary conditions can

also be seen in this figure (if a portion of a cluster crossed a

boundary wall then that portion appeared in the opposite

side). Some cells not belonging to any cluster occupy ran-

dom positions within the ROI. A typical PA signal for this

sample is displayed in Fig. 3(b). The corresponding envelope

histogram of that sample is shown in Fig. 3(c). Although the

envelope histogram followed the Rayleigh distribution, how-

ever, the width of the histogram increased compared to that

of non-aggregated blood. The mean power spectra for a se-

ries of aggregation levels are shown in Fig. 3(d) for frequen-

cies up to 100 MHz. Frequency spectra beyond 100 MHz

were complex and thus have been omitted in Fig. 3(d) for

clarity. It can be seen that first frequency minimum appeared

at lower frequency as the cluster size increased. This figure

also shows that the spectral intensity in the low frequency

range increased significantly as the mean size of clusters

FIG. 1. Flow chart diagram demon-

strating the method to generate the

spatial distribution of red blood cells

in clusters that mimic an aggregated

blood tissue sample.
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increased compared to the non-aggregating case. For exam-

ple, at 15.6 MHz for aggregating conditions with Rg¼ 9.97

and 15.39 lm there are� 8 and 11 dB enhancements of PA

spectral intensity compared to that of non-aggregated blood,

respectively. The corresponding values were 9 and 16 dB at

23.4 MHz. Essentially, the alteration of the spatial organiza-

tion (non-aggregation to aggregation) of cells could cause

great reduction in the destructive interference of the PA

waves (originating from the cells) in the lower frequency

range. This resulted in significant enhancement of spectral

intensity in this frequency range, which is linked to the ag-

gregate size. The large increase in spectral intensity clearly

suggests that non-aggregated and aggregated blood samples

could easily be distinguished by using PA spectroscopy. The

positions of first frequency minimum occurred at nearly 55

and 40 MHz, respectively for two aggregated blood samples

whereas it was about 420 MHz for the non-aggregated blood

sample. Thus, position of first frequency minimum also

showed great sensitivity to the RBC cluster size. The same

plots of Fig. 3(d) are presented in Fig. 3(e) on a log–log scale

over a large frequency range. It shows that the spectral inten-

sity curves follow complicated patterns after first minimum

and are not straightforward to interpret. A plot of the PA sig-

nal amplitude with cluster size [expressed in terms of radius

of gyration (Rg)] is shown in Fig. 3(f) and it increased as

the mean aggregate size increased. For instance, � 34%

enhancement of the mean signal amplitude was computed

for the blood sample with the largest cluster size when com-

pared to that of non-aggregated blood sample.

V. DISCUSSION

A theoretical formulation based on the single particle

approach is presented here to describe the PA pressure field

generated by a collection of erythrocytes. The resultant PA

field in this formalism has been written as a summation of

spherical waves emitted by the individual cells. The theoreti-

cal framework assumes that the effects of double and multiple

scattering of light waves are negligible. Therefore, this theory

would require further development for situations when this

assumption cannot be made. Moreover, optical absorption

coefficients for all cells were fixed to a constant value assum-

ing that the cells were in the same oxygenation state. In gen-

eral, this approximation is not valid because oxygen level

may vary for different cells. However, if we chose a wave-

length (e.g., � 584 or 800 nm, the isosbestic point27,28) for

which oxygenated and deoxygenated red blood cells have

similar absorption coefficients and then cell oxygenation state

does not play a role in the PA signals. For such a wavelength

this model will be applicable without any modification.

The simulated PA signal amplitude for non-aggregated

RBCs demonstrated a monotonic increase with hematocrit

[Fig. 2(f)] and that was also observed in an experimental

study.3 It may be argued that the signal strength increases

as the concentration of particles increases. Higher concentra-

tion means more PA sources and that results in stronger PA

signal. However, in ultrasound imaging, ultrasound back-

scatter coefficient for non-aggregated RBCs exhibits a non-

linear behavior with hematocrit. The theoretical backscatter

FIG. 2. (Color online) (a): An arrangement of randomly located red blood cells (represented by circles) for a hematocrit of H¼ 0.40. (b) A representative plot

of a PA signal in arbitrary units (A.U.). (c) Signal envelope histogram (250 RF lines were used). (d) Plots of PA power spectra for blood samples at different

hematocrits. (e) Same as (d) but plotted on a log–log scale. (f) Variation of mean (61 SD) of the PA signal amplitudes with hematocrit.
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coefficient, computed at 7.5 MHz, initially increases with he-

matocrit, reaches to its peak at nearly 13% hematocrit and

then decreases as the hematocrit increases.19 A similar pat-

tern has also been observed experimentally.19 At low cell

concentration the backscatter coefficient increases with he-

matocrit because the backscatter intensities of individual

RBCs add up in this case. But at higher RBC concentration,

if the size of the scattering volume is much larger than wave-

length, then a pair of RBCs can be found for which backscat-

ter waves will interfere destructively and therefore the

backscatter coefficient will drop with hematocrit.19 It is clear

that photoacostic and ultrasound signal properties of RBCs

are opposite in natures at higher concentration of cells. Fur-

ther investigation is required to clarify such opposite trends

in terms of interfering waves and concentrations of sources

and scatterers. However, the finite bandwidth of an ultra-

sound pulse (and therefore limited range of frequencies of

the scattered sound) is thought to play a significant role.

The model presented here has also been used to investi-

gate how PA signal amplitude and the power spectrum would

vary with the level of RBC aggregation. It was observed that

the PA signal amplitude increased as the level of aggregation

increased. Nevertheless, experimental confirmation of this

finding is required as there are many other factors (such as

effects of flow, intervening tissues, ultrasound transducer re-

ceiver bandwidth etc.) that may influence the sensitivity of the

proposed technique. Once all these factors are included, then

the technique could be designed to measure RBC aggregation

levels associated with a wide range of pathologies.

The simulation algorithm implemented here was capa-

ble to generate compact clusters. Only few cells were left in

the non-aggregated state in the simulated tissue configura-

tions mimicking aggregated blood samples. For example, for

the highest clustering condition with Rg¼ 15.39 lm, 99.74%

cells formed clusters and 0.26% cells remained in non-aggre-

gated state. Also the mean packing density of cells in clus-

ters was computed to be 0:7160:03 from 250 tissue

realizations. On the other hand in a configuration for the tis-

sue sample with smallest clusters (Rg¼ 7.57 lm), 96.37%

cells attached to the clusters and 3.63% cells found to be

non-aggregated cells. The corresponding mean packing den-

sity of cells in clusters was estimated to be 0:59 6 0:02 from

the same numbers of tissue configurations. Further, this is a

very fast method because cells occupy only some fixed loca-

tions within a cluster. For instance, the execution time to

generate 50 PA RF lines from 50 different tissue configura-

tions with the mean aggregate size, Rg¼15.39 lm was about

35 min in a remote computer cluster (Specification for each

node- Operating System: Linux CentOS 5, RAM: 16 GB,

Processor: Intel Xenon E5462 Quad Core 2.8 GHz).

An interesting point is to note that the samples were illu-

minated by a delta function heating pulse. Accordingly, the

PA signals generated here contained a wide range of fre-

quencies [MHz to GHz, Figs. 2(d) and 2(e) and Figs. 3(d)

FIG. 3. (Color online) (a): An arrangement of randomly located RBC clusters for H¼ 0.40. Small circles are individual RBCs and big circles show the cluster

boundaries (with mean radius of gyration, Rg¼ 12.24 lm). (b) A representative plot of a PA signal. (c) Signal envelope histogram (250 RF lines were used).

(d) Plots of PA power spectra starting from non-aggregated blood sample with Rg¼ 2.13 lm to other samples with different cluster sizes but at fixed hematocrit

of 40%. Cluster size increased as Rg increased. (e) Same as (d) but plotted on a log–log scale. In this figure the same sequence of (d) has been used to draw the

curves associated with different aggregation levels. (f) Variation of mean PA signal amplitude with mean RBC cluster size (expressed in radius of gyration, Rg).
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and 2(e)]. For these signals the Rayleigh distribution pro-

vided quite accurate fittings to the simulated envelope histo-

grams for both non-aggregated and aggregated blood

samples. However, the same trend may not be observed in

practise because a ultrasound transducer would modify the

characteristics of the signals detected due to its frequency

dependent sensitivity. Therefore, it would be of interest to

investigate the bandwidth dependent signal histogram fea-

tures particularly for aggregated blood samples. The band-

width dependent spectral variations appeared in Figs. 3(d)

and 3(e) due to spatial organization of cells suggest that the

envelope histogram patterns might not be same for different

receiving bandwidths. In that case the Rayleigh distribution

might not be a suitable distribution to describe various histo-

gram patterns. Some other more general distributions (such

as the Nakagami, generalized gamma, homodyned K distri-

butions) might be employed to fit the histograms.29–32 In the

context of ultrasound tissue characterization these distribu-

tions have been used extensively to model envelope histo-

grams arising from different scattering conditions and

provided useful information related to scatterer concentra-

tions and their spatial organizations.29–32

VI. CONCLUSIONS

The potential of using PA methods to assess the level of

aggregation of red blood cells in human blood is discussed.

For this purpose a 2D simulation study has been carried out

with non-aggregated and aggregated blood samples. Spatial

distributions of blood samples containing non-aggregated

RBCs at different hematocrits were generated by using a

Monte Carlo method known as the RSA technique. The red

blood cells were packed by using hexagonal packing scheme

to form a compact aggregate. Such an aggregate was

repeated and randomly placed within the region of interest to

simulate non-overlapping, isotropic, and identical RBC clus-

ters mimicking an aggregated blood sample. PA signal prop-

erties involving signal envelope statistics and frequency

power spectra were computed and subsequently examined

for both types of blood samples. The use of PA method to

evaluate the level of RBC aggregation in human blood and

the simulation technique presented here to the best of our

knowledge have never been discussed previously.

It was observed that the PA signal strength increased

monotonically as the concentration of red blood cells

increased. This is consistent with experimental findings for

non-aggregated RBCs.3 Moreover, envelope histograms fol-

lowed the Rayleigh distribution for the entire hematocrits

ranging from 0.02 to 0.50. It was found that the spectral in-

tensity at 15.6 MHz increased about 11 dB for an aggregated

blood sample with 40% hematocrit (and 15.39 lm as the

mean radius of gyration of clusters) compared to that of non-

aggregated blood at the same hematocrit with 2.13 lm as the

mean radius of gyration. Similarly an enhancement of 16 dB

was recorded at 23.4 MHz. These numerical values suggest

that assessment of the RBC aggregation level in human

blood using PA spectroscopy methods is feasible. The histo-

grams of the envelope statistics in this case also followed the

Rayleigh distributions and the r parameter of that distribu-

tion increased as the cluster size increased (with the hemato-

crit remained constant at 40%). Future work would include

extending the simulations to 3D systems and experimental

validation of these findings.
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APPENDIX

The probability density function (PDF) of the Rayleigh

distribution is given by

f ðyÞ ¼ y

r2
exp � y2

2r2

� �
; (A1)

where r is the scale parameter and 2r2 provides the average

intensity of the Rayleigh distribution.32 If Y is a random vari-

able with a Rayleigh PDF, then

r ¼ EðYÞ
1:253

; (A2)

where E is the expected-value operator.
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