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Abstract— The response of polymer shell ultrasound contrast 
agents (PSUCAs) at frequencies < 5 MHz has been shown to be 
associated with shell rupture and the formation of free gas 
bubbles. Recently, it was shown that PSUCAs produce significant 
subharmonic (SH) response at higher frequencies (20-40 MHz) 
which is not consistent with the formation of free bubbles. 
Despite the high control over the manufacture of PSUCAs, there 
is limited knowledge on the response of PSUCAs to ultrasonic 
excitation, especially at higher excitation frequencies. In this 
work, the dynamics of individual PSUCAs in response to 30 cycle 
8-32 MHz excitations with pressure amplitudes ranging ~70 kPa - 
2.5MPa was studied by experimental observations using a Vevo 
770 ultrasonics imaging instrument. In each case a very dilute 
solution of PSUCAs were used to minimize the interaction 
between the PSUCAs. The RF signal of the individual UCA 
oscillations were extracted and analyzed. The results of this study 
show that PSUCAs can undergo stable linear and nonlinear 
oscillations with substantial amplitude. 2nd and 3rd order super 
harmonic (SUH) oscillations excitations and 1/2, 1/3, ¼ and 1/5 
order SHs were detected for the investigated frequencies. 
Compression only behaviors were also detected mainly resulting 
in linear oscillations. The generation of the compression only 
behavior and SH oscillations in thick shell PSUCAs may only be 
explainable by the Marmottant model. Results of this study show 
the feasibility of the substantial nonlinear oscillations in the 
oscillations of the PSUCAs. Further investigations are needed to 
be carried out to fully realize the potential of the application of 
PSUCAs within the field of medical ultrasound. 
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I.  INTRODUCTION  

Optimization of imaging and therapeutic applications of 
ultrasound contrast agents (UCAs) in medical ultrasound 
strongly depends on a solid understanding of their acoustic 
behaviour.  UCA dynamics depend on ultrasound exposure 
parameters such as the acoustic pressure and pulse frequency, 
and the UCA characteristics such as the UCA shell 
composition and UCA size.  The characterization of UCAs 
non-linear dynamics may potentially allow improvements in 
ultrasound imaging and therapeutic applications [1]. In this 
regard several studies have investigated the dynamics of lipid 
shell contrast agents [2,3].  

Polymer shell UCAs (PSUCAs) can also be employed as 
UCAs both in diagnostic and therapeutic ultrasound. The 

manufacture of PSUCAs allows maximum control of the 
diameter and shell thickness [4,5]. The response of PSUCAs at 
frequencies < 5 MHz has been shown to be associated with 
shell rupture and scape of free gas bubbles [6,7]. However, 
recently, it was shown that PSUCAs produce significant 
subharmonic (SH) response   at higher frequencies (20-40 
MHz) which is not consistent with the formation of free 
bubbles [5,8].  

Despite  being able to control polymer contrast agent 
physical parameters (e.g. shell thickness to radius ratio), there 
is limited knowledge on the response of PSUCAs to ultrasonic 
excitation, especially at higher excitation frequencies.   

Better understanding the behavior of PSUCAs can help 
optimize their application in contrast enhanced ultrasound and 
drug delivery. In this study the behaviors of individual thick 
shell PSUCAs (~100nm) are studied over a large range of 
acoustic pressure (0.07-2.5 MPa) and insonation frequency (8-
32 MHz). This investigation was guided by the classification of 
the nonlinear dynamics and bifurcation structure of the UCA 
oscillation [1,9,10]. 

 

II. METHODS 

A. UCA preperation 

The method of preparation is similar to the one discussed in 
[6]. The two immiscible liquids, perfluorohexane (PFH) and 
Polymethylsilsesquioxane (PMSQ) solution, were subject to 
coaxial electrohydrodynamic atomization at flow rates of  650 
μl/min and 150 μl/min, respectively. Once a stable jet was 
formed at an applied electrical potential difference of 4.8 kV, 
droplets of PFH surrounded by PMSQ were generated by jet 
breakup and then neutralized by a grounded electrode [3].  

The relevant physical properties of the liquids used in the 
experimental work are given in table 1. The resulting polymer 
spheres were stable and sedimented in water due to their 
relatively high density. In this work, the measured size 
distribution of the PSUCAs had a peak at ~1 μm and a  shell 
thickness of ~100 nm. The shell elasticity is approximately 100 
MPa. The estimation of the shell properties is based on bulk 
polymer properties under quasi static testing. 
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