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Abstract— The presence of microbubbles (MBs) in a medium 
changes the medium’s acoustic properties and increases the 
attenuation of the bubbly medium. Current models of ultrasound 
attenuation in a bubbly medium are based on linear 
approximations; that is MB undergoes very small amplitude 
oscillations. Thus linear models of attenuation are not valid in 
many regimes used in diagnostic and therapeutic ultrasound 
applications. In this study, a model is developed that incorporates 
the nonlinear attenuation and sound speed by deriving the 
complex wave number from the Calfish model for the 
propagation of acoustic waves in a bubbly medium. Using the 
methods of nonlinear dynamics, we have classified the behavior 
of MBs for a wide range of frequencies and applied pressures. 
The results of the bubble oscillations are visualized using the 
bifurcation diagrams of the radial oscillations of the MBs as a 
function of the incident pressure. It is shown that depending on 
the frequency of the ultrasound wave, the nonlinear oscillations 
of the MBs can be classified into 5 main categories in which the 
MBs oscillations exhibit: 1. Linear resonance (fr), 2. Pressure-
dependent resonance (fs), 3. Sub Harmonic (SH) resonance 
(fSH), 4. Pressure-dependent SH resonance (fpSH) and 5. Higher 
order SH resonance oscillations (fn). Results show that when 
MBs are sonicated by their fr, the effective attenuation of the 
medium can potentially decrease as the pressure increases, which 
is in good agreement with experimental observations. When 
sonicated with their fs, the effective attenuation of the medium is 
smaller than in the case of fr. This happens only below a pressure 
threshold that corresponds to the saddle node bifurcation in the 
corresponding bifurcation diagram. Above this pressure, the 
effective attenuation and sound speed increase abruptly by ~5 
and ~2 folds, respectively. In the other classified sonication 
regimes (fSH, fsSH and fn) (3-5), the attenuation and sound 
speed changes are negligible below the pressure threshold 
corresponding to the SH oscillations. As soon as the pressure 
increases above the threshold for SH oscillations (e.g. period 
doubling in the bifurcation diagram), the effective attenuation 
increases abruptly (~ up to 3 fold), however the maximum 
exhibited attenuation is ~10 to 50 folds smaller than the 
maximum attenuation in case of sonication with fr and fs.  

I. INTRODUCTION  

The behavior of microbubbles (MBs) is non-linear and 
complex [1-6]. Introducing of MBs in a medium changes the 
acoustic properties of the medium. It increases the attenuation 
[7-9] of the medium and alters the sound speed [7, 8]. The 
existing models of ultrasound attenuation in a bubbly medium 
are based on linear approximations (very small amplitude MB 

oscillations-e.g. the Commansder and Prosperetti model [7]). 
However, in most of the applications (e.g. MB enhanced 
diagnostic imaging, therapeutic ultrasound and sonochemistry) 
higher acoustic pressures are employed which result in high 
amplitude nonlinear MB oscillations. Thus linear models are 
not valid in many regimes used in applications [8-9]. 

II. METHODS 

A. The nonlinear model for the attenuation and sound speed 

Calfish has developed a model [10] for the propagation of 
an acoustic wave of arbitrary amplitude in a bubbly liquid. The 
bubbly liquid is described as a continuum, in which the radial 
oscillations of all the bubbles of an elementary small volume of 
mixture located at a spatial point r can be explained by a 
continuous spatio-temporal radius function R(r,t). After 
elimination of the velocity field between the conservation of 
mass and momentum equations, the Calfish model [10] can be 
written as [7]: 

                       (1) 

Where P is the acoustic pressure, cl is the sound speed of the 
medium in the absence of the bubbles, ρl is the density of the 
liquid and β is the instantaneous void fraction as is given by eq. 

2:                                 (2) 

Where N is the number of the bubbles per m3 

By deriving the real and imaginary part of the complex wave 
number from the calfish equation the attenuation and speed of 
sound can be written as a function of the driving frequency and 
acoustic pressure and the radial oscillations of the MBs. The 
time averaged real and imaginary part of k2 are respectively 
represented by equations 3 and 4 

 (3) 

          (4) 

Where the operator � and ℑ are imaginary and real part of the complex number and T is the duration of the pulse. 
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Using the real and imaginary part of the wave number the pressure dependent nonlinear attenuation and speed of sound in the bubbly medium can simply be derived. 
B. Hoff model for the radial oscillations of the mirobubbles 

The radial oscillations of the MBs as a function of pressure, 
frequency and the MB initial radius was simulated by 
numerically solving the Hoff model [11] and considering the 
additional terms responsible for radiation and thermal damping 
[12].  

 

 (5) 

Where: 

 (5) 

The parameters of this equation are summarized in table 1. 

The results of the numerical simulations were visualized using 
the bifurcation diagrams. 
 

 
Tabel 1: Parameters of equation 2 and 3. 
 

III. RESULTS  

Figure 1 shows the bifurcation diagram of the normalized 
radial oscillations of the MB as a function of acoustic pressure 
at different frequencies. Depending on the frequency of the 
ultrasound wave, the nonlinear oscillations of the MBs can be 
classified into 5 main categories where the MBs exhibit (fig 1):  

1. Linear resonance (fr=2.4 MHz – blue line). 

2. 2. Pressure dependent resonance (fs=1.9 MHz- red 
line) [13] 

3. Sub Harmonic (SH) resonance (fSH=4.8 MHz- black 
line) 

4. Pressure dependent SH resonance (fpSH=3.6 MHz-green 
line) and  

5. Higher order SH resonance oscillations (f3= 6.3MHz-
brown line and f4 = 8 MHz-light orange line). 

When sonicated with fr, as the pressure increases, the radial 
oscillations of the MB increases and the oscillations undergo a 
period doubling bifurcation at ~300 kPa. The MB undergoes a 
possible collapse at ~430 kPa as the normalized radial 
oscillations of the MB pass the destruction threshold (R/R0>2 
[14]). The corresponding attenuation behavior of the medium is 
shown in a blue line in Figure 2.  When the MB is driven at its 
fr, the attenuation is maximum at the lower sonication 
pressures. As the pressure increases, the attenuation decreases.  
The attenuation decreases further which is concomitant with 
period doubling.  

The sound speed when sonicated at fr (blue line in Figure 
3) is equal to the sound speed of the liquid at very low 
pressures <1kPa. As the pressure increases the normalized 
sound speed c/cl (speed of sound in the bubbly liquid/sound 
speed of the pure liquid) increases to ~1.5. As the pressure 
increases further the sound speed undergoes a decrease 
concomitant with the period doubling. 

When the MB is sonicated with its pressure dependent 
resonance frequency [13] (1.9   
MHz- red line in figure 1) the radial oscillation amplitude 
undergoes a sudden increase via a saddle node bifurcation at 
~115 kPa. The MB oscillations pass the destruction threshold 
at ~270 kPa.  The corresponding attenuation (red line in figure 
2) is small compared to the case of linear resonance only below 
the pressure threshold for the saddle node bifurcation. The 
attenuation increases abruptly (~5 times) concomitant with the 
saddle node bifurcation at ~115 kPa.  The attenuation starts 
decreasing slowly as the pressure increases >~120kPa.  

The normalized sound speed (c/cl) is ~0.8 only when the 
pressure is below the pressure threshold for saddle node 
bifurcation. Above this pressure the sound speed grows 
abruptly and reaches ~2.1.  At the saddle node bifurcation 
pressure the sound speed of the bubbly liquid is equal to the 
speed of sound in the pure liquid. 

            When the MB is sonicated by its SH resonance 
frequency (fSH=4.8 MHz the black line in fig. 1) The period 
doubling occurs at the lowest pressure threshold ~160 kPa 
compared to other frequencies. The radial oscillations undergo 
further period doublings to chaos at ~ 730 kPa.  The 
attenuation of the medium (black line in figure 2) is 
significantly lower than the case of fr and fs. As soon as 
period doubling occurs, the attenuation increases abruptly by 
~2 fold. Further increase in pressure results in a slight 
decrease in attenuation.  
     When sonicated with 3.6 MHz (green line in figure 1) the 
radial oscillations of the MB undergo a saddle node 
bifurcation to period 2 oscillations at ~ 330 kPa. The 
corresponding attenuation in figure 2 (green line) abruptly 
increases (~3 fold) concomitant with saddle node bifurcation.  



 
Figure 1: Bifurcation diagram of the radial oscillations of the MB versus the 
driving acoustic pressure. Every color represents a different frequency. 

 
Figure 2: Attenuation of the bubbly medium versus pressure at different 

frequencies. Pressure ranges for attenuation calculation are extracted from the 
bifurcation diagrams. 

 

Figure 3: Normalized speed of sound (c/cl) of the bubbly medium versus 
pressure at different frequencies. Each color represents a different frequency.  

 
When the MBs are sonicated with frequencies slightly less 
than 3 and 4 times its linear resonance, higher order SH 
responses of respectively 1/3 and 1/4 occur in the radial 
oscillations [15].       For sonication frequency of 6.3 MHz 
(brown line in fig 1) the MB exhibits period 3 oscillations (1/3 
SHs) for pressure levels above ~855 kPa. The attenuation of 

the medium undergoes an increase (~ 2 times) concomitant 
with period 3 oscillations.  
When MBs are sonicated with 8 MHz (light orange line in fig. 
1), the radial oscillations of the MB exhibits period 4 
oscillations for acoustic pressures above 1.6 MPa.  The 
attenuation of the medium undergoes a sharp increase (~1.7 
fold) as soon as MB exhibits period 4 oscillations.  
The changes in the speed of sound is more emphasized in case 
of sonication with fs and fr and it is negligible for higher 
frequencies (fig. 3) 

IV.        DISCUSSION AND SUMMARY 

          The acoustic response of MBs strongly depends on the 
ultrasound frequency and pressure. It is shown that the 
nonlinear oscillations of the MBs can be classified into 5 main 
categories depending on the sonicated frequency in which MBs 
exhibit: 1. Linear resonance (fr), 2. Pressure-dependent 
resonance (fs), 3. Sub Harmonic (SH) resonance (fSH), 4. 
Pressure-dependent SH resonance and 5. Higher order SH 
resonance oscillations (fn).  The results show that when MBs 
are sonicated at their fr, the effective attenuation of the medium 
can potentially decrease as the pressure increases, which is in 
good agreement with experimental observations [16]. When 
sonicated with their fs, the effective attenuation of the medium 
is smaller than in the case of fr. This happens only below a 
pressure-threshold that corresponds to the saddle node 
bifurcation in the associated bifurcation diagram. Above this 
pressure, the effective attenuation and sound speed increase 
abruptly by ~5 and ~2 folds, respectively. In the other 
classified sonication regimes (3-5), the attenuation and sound 
speed changes are negligible below the threshold 
corresponding to the SH oscillations. As soon as the pressure 
increases above the threshold for SH oscillations (e.g. period 
doubling in the bifurcation diagram), the effective attenuation 
increases abruptly (~ up to 3 fold), however the maximum 
exhibited attenuation is ~10 to 50 folds smaller than the 
maximum attenuation in case of sonication with fr and fs. 

  The changes of the attenuation and speed of sound of a 
bubbly medium are nonlinear and depend on frequency and 
pressure. Linear models (e.g  Commander and Propseretti [7]) 
are only valid for small amplitude oscillations and they cannot 
capture the significant changes in attenuation as the pressure 
increases. The semi-linear model developed by Louisnard [8] 
can capture the pressure dependent imaginary part of the 
wavenumber; however it still uses the linear model to estimate 
for the real part of the wave number. It was shown that the 
speed of sound exhibits strong pressure dependence when the 
bubbly medium is sonicated with fs and fr. Thus the semi-
linear model will fail in capturing the attenuation accurately at 
these regimes. 
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